Table of Contents
ISRN Biotechnology
Volume 2013, Article ID 521067, 6 pages
http://dx.doi.org/10.5402/2013/521067
Research Article

Enzyme-Enhanced Extraction of Phenolic Compounds and Proteins from Flaxseed Meal

School of Chemistry, Federal University of Rio de Janeiro, Ilha do Fundão, 21945-970, Rio de Janeiro, RJ, Brazil

Received 21 August 2012; Accepted 11 September 2012

Academic Editors: B. Castiglioni, K. R. Davis, C. Scheckhuber, and A. Tiessen

Copyright © 2013 Bernardo Dias Ribeiro et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. D. Oomah, “Flaxseed as a functional food source,” Journal of the Science of Food and Agriculture, vol. 81, no. 9, pp. 889–894, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Warrand, P. Michaud, L. Picton et al., “Structural investigations of the neutral polysaccharide of Linum usitatissimum L. seeds mucilage,” International Journal of Biological Macromolecules, vol. 35, no. 3-4, pp. 121–125, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. Z. S. Zhang, D. Li, L. J. Wang et al., “Optimization of ethanol-water extraction of lignans from flaxseed,” Separation and Purification Technology, vol. 57, no. 1, pp. 17–24, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Naran, G. Chen, and N. C. Carpita, “Novel rhamnogalacturonan I and arabinoxylan polysaccharides of flax seed mucilage,” Plant Physiology, vol. 148, no. 1, pp. 132–141, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Xu, C. Hall III, and C. Wolf-Hall, “Antifungal activity stability of flaxseed protein extract using response surface methodology,” Journal of Food Science, vol. 73, no. 1, pp. M9–M14, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Eliasson, A. Kamal-Eldin, R. Andersson, and P. Åman, “High-performance liquid chromatographic analysis of secoisolariciresinol diglucoside and hydroxycinnamic acid glucosides in flaxseed by alkaline extraction,” Journal of Chromatography A, vol. 1012, no. 2, pp. 151–159, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. W. Zhang, X. Wang, Y. Liu et al., “Dietary flaxseed lignan extract lowers plasma cholesterol and glucose concentrations in hypercholesterolaemic subjects,” British Journal of Nutrition, vol. 99, no. 6, pp. 1301–1309, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Mueller, P. Eisner, Y. Yoshie-Stark, R. Nakada, and E. Kirchhoff, “Functional properties and chemical composition of fractionated brown and yellow linseed meal (Linum usitatissimum L.),” Journal of Food Engineering, vol. 98, no. 4, pp. 453–460, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Renouard, C. Hano, C. Corbin et al., “Cellulase-assisted release of secoisolariciresinol from extracts of flax (Linum usitatissimum) hulls and whole seeds,” Food Chemistry, vol. 122, no. 3, pp. 679–687, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. N. D. Westcott and D. Paton, “A complex containing lignan, phenolic and aliphatic substances from flax and process for preparing,” WO Patent 00/78771 A1, 2000. View at Google Scholar
  11. T. A. Dobbins and D. B. Wiley, “Process for recovering secoisolariciresinol diglycoside from defatted flaxseed,” US Patent 6806356 B2, 2004. View at Google Scholar
  12. M. Puri, D. Sharma, and C. J. Barrow, “Enzyme-assisted extraction of bioactives from plants,” Trends in Biotechnology, vol. 30, pp. 37–44, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. P. G. Waterman and S. Mole, Analysis of Phenolic Plant Metabolites, Blackwell Scientific Publications, Oxford, UK, 1994.
  14. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the Folin phenol reagent,” The Journal of biological chemistry, vol. 193, no. 1, pp. 265–275, 1951. View at Google Scholar · View at Scopus
  15. M. Somogyi, “Notes on sugar determination,” The Journal of Biological Chemistry, vol. 195, pp. 19–23, 1952. View at Google Scholar
  16. P. F. F. Amaral, Produção de Lipase de Yarrowia Lipolytica em Biorreator Multifásico, Editora Edgard Blucher Ltda, São Paulo, Brazil, 1st edition, 2010.
  17. H. Chen and S. Jin, “Effect of ethanol and yeast on cellulase activity and hydrolysis of crystalline cellulose,” Enzyme and Microbial Technology, vol. 39, no. 7, pp. 1430–1432, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Beynon and J. S. Bond, Proteolytic Enzymes, a Practical Approach, Oxford University Press, Oxford, UK, 2nd edition, 2001.
  19. C. C. Udenigwe, Y. S. Lin, W. C. Hou, and R. E. Aluko, “Kinetics of the inhibition of renin and angiotensin I-converting enzyme by flaxseed protein hydrolysate fractions,” Journal of Functional Foods, vol. 1, no. 2, pp. 199–207, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. C. C. Udenigwe, A. P. Adebiyi, A. Doyen, H. Li, L. Bazinet, and R. Aluko, “Low molecular weight flaxseed protein-derived arginine-containing peptides reduced blood pressure of spontaneously hypertensive rats faster than amino acid form of arginine and native flaxseed protein,” Food Chemistry, vol. 132, pp. 468–475, 2012. View at Google Scholar
  21. C. C. Udenigwe, Y. L. Lu, C. H. Han, W. C. Hou, and R. E. Aluko, “Flaxseed protein-derived peptide fractions: antioxidant properties and inhibition of lipopolysaccharide-induced nitric oxide production in murine macrophages,” Food Chemistry, vol. 116, no. 1, pp. 277–284, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. B. A. Slominski, X. Meng, L. D. Campbell, W. Guenter, and O. Jones, “The use of enzyme technology for improved energy utilization from full-fat oilseeds. Part II: flaxseed,” Poultry Science, vol. 85, no. 6, pp. 1031–1037, 2006. View at Google Scholar · View at Scopus
  23. P. K. J. P. D. Wanasundara and F. Shahidi, “Removal of flaxseed mucilage by chemical and enzymatic treatments,” Food Chemistry, vol. 59, no. 1, pp. 47–55, 1997. View at Publisher · View at Google Scholar · View at Scopus
  24. C. H. L. Ho, J. E. Cacace, and G. Mazza, “Extraction of lignans, proteins and carbohydrates from flaxseed meal with pressurized low polarity water,” LWT—Food Science and Technology, vol. 40, no. 9, pp. 1637–1647, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. W. Zhang and S. Xu, “Microwave-assisted extraction of secoisolariciresinol diglucoside from flaxseed hull,” Journal of the Science of Food and Agriculture, vol. 87, no. 8, pp. 1455–1462, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. V. Calado and D. C. Montgomery, Planejamento de Experimentos Usando o Statistica, E-papers Serviços Editoriais, Rio de Janeiro, Brazil, 2003.
  27. M. I. Rodrigues and A. F. Iemma, Planejamento De Experimentos e Otimização De Processos, Casa do Pão Editora, 2005.