Table of Contents
ISRN Toxicology
Volume 2013, Article ID 521432, 7 pages
http://dx.doi.org/10.1155/2013/521432
Research Article

Influence of Mikania laevigata Extract over the Genotoxicity Induced by Alkylating Agents

1Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Avenida Universitária 1105, Bairro Universitário, 88806-000 Criciúma, SC, Brazil
2Grupo de Estudos Etnofarmacológicos Visando à Obtenção de Substâncias Bioativas, Universidade do Extremo Sul Catarinense (UNESC), Avenida Universitária 1105, Bairro Universitário, 88806-000 Criciúma, SC, Brazil

Received 29 December 2012; Accepted 23 January 2013

Academic Editors: F. Ducancel, H. Pan-Hou, and F.-Y. Yu

Copyright © 2013 Daliane Medeiros Mazzorana et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Medicinal plants are still widely used worldwide; yet for some species, little or no information is available concerning their biological activity, specially their genotoxic and antimutagenic potential. Mikania laevigata (Asteraceae) is a native plant from South America, and its extracts are largely used to treat respiratory complaints. The aim of the present work was then to evaluate, in vivo, the potential biological activity of M. laevigata on the genotoxicity induced by methyl methanesulfonate (MMS) and cyclophosphamide (CP), using the comet assay. Male CF1 mice were divided into groups of 5-6 animals, received by gavage 0.1 mL/10 g body wt of water, Mikania laevigata extract (MLE), MMS, and CP. Results showed that treatment with 200 mg/kg of the MLE previously to MMS and CP administration, respectively, reduced the damage index (DI) in 52% and 60%, when compared to DI at 24 h. Pretreatment also reduced the damage frequency (DF) in 56% (MMS) and 58% (CP), compared to DF at 24 h. MLE administration has been shown to protect mouse DNA from damage induced by alkylating agents; this corroborates to the biological activities of M. laevigata and points towards the need of plant compounds isolation to proceed with further studies.