Table of Contents
ISRN Biotechnology
Volume 2013, Article ID 528708, 8 pages
http://dx.doi.org/10.5402/2013/528708
Research Article

The Use of Response Surface Methodology as a Statistical Tool for Media Optimization in Lipase Production from the Dairy Effluent Isolate Fusarium solani

Department of Biotechnology, Kumaraguru College of Technology, Coimbatore 641049, India

Received 19 June 2012; Accepted 10 September 2012

Academic Editors: A. O. Ballesteros, Y. H. Cheong, A. D'Annibale, H. S. Garcia, A. Singh, and H. Stamatis

Copyright © 2013 P. Kanmani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. E. Jaeger and M. T. Reetz, “Microbial lipases form versatile tools for biotechnology,” Trends in Biotechnology, vol. 16, no. 9, pp. 396–403, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. K. E. Jaeger, B. W. Dijkstra, and M. T. Reetz, “Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases,” Annual Review of Microbiology, vol. 53, pp. 315–351, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Sangeetha, I. Arulpandi, and A. Geetha, “Bacterial lipases as potential industrial biocatalysts: an overview,” Research Journal of Microbiology, vol. 6, no. 1, pp. 1–24, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Hasan, A. A. Shah, and A. Hameed, “Industrial applications of microbial lipases,” Enzyme and Microbial Technology, vol. 39, no. 2, pp. 235–251, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. F. W. Paques, T. F. Pio, P. D. O. Carvalho, and G. A. Macedo, “Characterization of the lipase from Carica papaya residues,” Brazilian Journal of Food Technology, vol. 11, pp. 20–27, 2008. View at Google Scholar
  6. F. W. Paques and G. A. Macedo, “Plant lipases from latex: properties and industrial applications,” Quimica Nova, vol. 29, no. 1, pp. 93–99, 2006. View at Google Scholar · View at Scopus
  7. Gangadhara, P. Ramesh Kumar, and V. Prakash, “The stabilizing effects of polyols and sugars on porcine pancreatic lipase,” Journal of the American Oil Chemists' Society, vol. 86, no. 8, pp. 773–781, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Shan, T. Wu, Y. Reng, and Y. Wang, “Breed difference and regulation of the porcine adipose triglyceride lipase and hormone sensitive lipase by TNFα,” Animal Genetics, vol. 40, no. 6, pp. 863–870, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. J. C. V. Dutra, S. Da, J. V. Bevilaqua et al., “Lipase production in solid-state fermentation monitoring biomass growth of Aspergillus niger using digital image processing,” Applied Biochemistry and Biotechnology, vol. 147, no. 1–3, pp. 63–75, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Griebeler, A. E. Polloni, D. Remonatto et al., “Isolation and screening of lipase producing fungi and hydrolytic activity,” Food and Bioprocess Technology, vol. 4, no. 4, pp. 578–586, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. F. J. Contesini, D. B. Lopes, G. A. MacEdo, M. D. G. Nascimento, and P. D. O. Carvalho, “Aspergillus sp. lipase: potential biocatalyst for industrial use,” Journal of Molecular Catalysis B, vol. 67, no. 3-4, pp. 163–171, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. P. D. O. Carvalho, S. A. Calafatti, M. Marassi et al., “Potential of enantioselective biocatalysis by microbial lipases,” Quimica Nova, vol. 28, no. 4, pp. 614–621, 2005. View at Google Scholar · View at Scopus
  13. G. L. Sant'Anna, “Lipase production by Penicillium restrictum in a bench-scale fermenter effect of carbon and nitrogen nutrition, agitation, and aeration,” Applied Biochemistry and Biotechnology A, vol. 63-65, no. 1–3, pp. 409–421, 1997. View at Google Scholar · View at Scopus
  14. R. Bussamara, L. Dall’Agnol, A. Schrank, K.F. Fernandes, and M.H. Vainstein, “Optimal conditions for continuous immobilization of Psuedozyma hubeiensis (Strain HB85A) lipase by adsorption in a packed-bed reactor by response surface methodology,” Enzyme Research, vol. 2012, Article ID 329178, 12 pages, 2012. View at Publisher · View at Google Scholar
  15. S. Saxena and R. K. Saxena, “Statistical optimization of tannase production from Penicillium variable using fruits (chebulic myrobalan) of Terminalia chebula,” Biotechnology and Applied Biochemistry, vol. 39, no. 1, pp. 99–106, 2004. View at Google Scholar · View at Scopus
  16. A. Vohra and T. Satyanarayana, “Statistical optimization of the medium components by response surface methodology to enhance phytase production by Pichia anomala,” Process Biochemistry, vol. 37, no. 9, pp. 999–1004, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. N. Gupta, V. Sahai, and R. Gupta, “Alkaline lipase from a novel strain Burkholderia multivorans: statistical medium optimization and production in a bioreactor,” Process Biochemistry, vol. 42, no. 4, pp. 518–526, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. U. K. Winkler and M. Stuckmann, “Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens,” Journal of Bacteriology, vol. 138, no. 3, pp. 663–670, 1979. View at Google Scholar · View at Scopus
  19. M. Y. A. Samad, A. B. Salleh, C. N. A. Razak, K. Ampon, W. M. Z. W. Yunus, and M. Basri, “A lipase from a newly isolated thermophilic Rhizopus rhizopodiformis,” World Journal of Microbiology & Biotechnology, vol. 6, no. 4, pp. 390–394, 1990. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Abbas, A. Hiol, V. Deyris, and L. Comeau, “Isolation and characterization of an extracellular lipase from Mucor sp strain isolated from palm fruit,” Enzyme and Microbial Technology, vol. 31, no. 7, pp. 968–975, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Adinarayana, K. V. V. S. N. Bapi Raju, M. Iqbal Zargar, R. Bhavani Devi, P. Jhansi Lakshmi, and P. Ellaiah, “Optimization of process parameters for production of lipase in solid-state fermentation by newly isolated Aspergillus species,” Indian Journal of Biotechnology, vol. 3, no. 1, pp. 65–69, 2004. View at Google Scholar · View at Scopus
  22. G. Falony, J. C. Armas, J. C. D. Mendoza, and J. L. M. Hernández, “Production of extracellular lipase from Aspergillus niger by solid-state fermentation,” Food Technology and Biotechnology, vol. 44, no. 2, pp. 235–240, 2006. View at Google Scholar · View at Scopus
  23. H. M. Rifaat, A. A. El-Mahalawy, H. A. El-Menofy, and S. A. Donia, “Production, optimization and partial purification of lipase from Fusarium oxysporum,” Journal of Applied Sciences in Environmental Sanitation, vol. 5, no. 1, pp. 39–53, 2010. View at Google Scholar
  24. R. Kader, A. Yousuf, and M. M. Hoq, “Optimization of lipase production by a Rhizopus MR12 in shake culture,” Journal of Applied Sciences, vol. 7, no. 6, pp. 855–860, 2007. View at Google Scholar · View at Scopus
  25. X. Y. Li, Z. Q. Liu, and Z. M. Chi, “Production of phytase by a marine yeast Kodamaea ohmeri BG3 in an oats medium: optimization by response surface methodology,” Bioresource Technology, vol. 99, no. 14, pp. 6386–6390, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. L. V. A. Reddy, Y. J. Wee, J. S. Yun, and H. W. Ryu, “Optimization of alkaline protease production by batch culture of Bacillus sp. RKY3 through Plackett-Burman and response surface methodological approaches,” Bioresource Technology, vol. 99, no. 7, pp. 2242–2249, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. R. V. Muralidhar, R. R. Chirumamila, R. Marchant, and P. Nigam, “A response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources,” Biochemical Engineering Journal, vol. 9, no. 1, pp. 17–23, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Tommaso, B. S. de Moraes, G. C. Macedo, G. S. Silva, and E. S. Kamimura, “Production of lipase from Candida rugosa using cheese whey through experimental design and response surface methodology,” Food and Bioprocess Technology, vol. 4, pp. 1473–1481, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. S. M. Basheer, S. Chellappan, P. S. Beena, R. K. Sukumaran, K. K. Elyas, and M. Chandrasekaran, “Lipase from marine Aspergillus awamori BTMFW032: production, partial purification and application in oil effluent treatment,” New Biotechnology, vol. 28, no. 6, pp. 627–638, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Salihu, M. Z. Alam, M. I. Abdulkarim, and H. M. Salleh, “Optimization of lipase production by Candida cylindracea in palm oil mill effluent based medium using statistical experimental design,” Journal of Molecular Catalysis B, vol. 69, no. 1-2, pp. 66–73, 2011. View at Publisher · View at Google Scholar · View at Scopus