Table of Contents
ISRN Robotics
Volume 2013, Article ID 541643, 7 pages
http://dx.doi.org/10.5402/2013/541643
Research Article

New Volume Change Mechanism Using Metal Bellows for Buoyancy Control Device of Underwater Robots

Department of Mechanical and Systems Engineering, Ryukoku University, 1-5 Yokotani, Seta Oe, Shiga, Otsu 520-2194, Japan

Received 30 November 2012; Accepted 19 December 2012

Academic Editors: G. C. Gini, D. M. Lyons, and D. K. Pratihar

Copyright © 2013 Koji Shibuya and Sho Yoshii. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. M. Hallegraeff, “Transport of toxic dinoflagellates via ships' ballast water: bioeconomic risk assessment and efficacy of possible ballast water management strategies,” Marine Ecology Progress Series, vol. 168, pp. 297–309, 1998. View at Google Scholar · View at Scopus
  2. M. R. Clarke, “Structure and proportions of the spermaceti organ in the sperm whale,” Journal of the Marine Biological Association of the United Kingdom, vol. 58, pp. 1–17, 1978. View at Google Scholar
  3. M. R. Clarke, “Physical properties of spermaceti oil in the sperm whale,” Journal of the Marine Biological Association of the United Kingdom, vol. 58, pp. 19–26, 1978. View at Google Scholar
  4. M. R. Clarke, “Buoyancy control as a function of the spermaceti organ in the sperm whale,” Journal of the Marine Biological Association of the United Kingdom, vol. 58, pp. 27–71, 1978. View at Google Scholar
  5. P. J. O. Miller, M. P. Johnson, P. L. Tyack, and E. A. Terray, “Swimming gaits, passive drag and buoyancy of diving sperm whales Physeter macrocephalus,” Journal of Experimental Biology, vol. 207, no. 11, pp. 1953–1967, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Klintberg, M. Karlsson, L. Stenmark, J. A. Schweitz, and G. Thornell, “A large stroke, high force paraffin phase transition actuator,” Sensors and Actuators A, vol. 96, no. 2-3, pp. 189–195, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Hyodo, W. Koderayama, and M. Nakamura, “Buoyancy adjusting device, underwater sailing body, and buoyancy adjusting method,” Japan Patent, Publication number: 2008-120316, 2008.
  8. T. Kobayashi, K. Amaike, K. Watanabe et al., “Deep NINJA: a new float for deep ocean observation developed in Japan,” in Proceedings of IEEE Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies (SSC '11), April 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. http://www.whoi.edu/oceanus/viewArticle.do?id=47166.
  10. K. Shibuya, Y. Kado, S. Honda, T. Iwamoto, and K. Tsutsumi, “Underwater robot with a buoyancy control system based on the spermaceti oil hypothesis,” in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '06), pp. 3012–3017, Beijing, China, October 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Shibuya and K. Kawai, “Development of a new buoyancy control device for underwater vehicles inspired by the sperm whale hypothesis,” Advanced Robotics, vol. 23, no. 7-8, pp. 831–846, 2009. View at Publisher · View at Google Scholar · View at Scopus