Table of Contents
ISRN Geriatrics
Volume 2013, Article ID 542080, 11 pages
http://dx.doi.org/10.1155/2013/542080
Research Article

Small-World Properties in Mild Cognitive Impairment and Early Alzheimer’s Disease: A Cortical Thickness MRI Study

Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, 4th Floor, 660 First Avenue, New York City, NY 10016, USA

Received 26 December 2012; Accepted 21 January 2013

Academic Editors: D. Chan, S.-K. Herukka, C. S. Hurt, A. McKinlay, D. Orsucci, J. Ryan, and H. Umegaki

Copyright © 2013 Yongxia Zhou and Yvonne W. Lui. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. S. Bassett and E. Bullmore, “Small-world brain networks,” Neuroscientist, vol. 12, no. 6, pp. 512–523, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Achard, R. Salvador, B. Whitcher, J. Suckling, and E. Bullmore, “A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs,” The Journal of Neuroscience, vol. 26, no. 1, pp. 63–72, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. He, Z. J. Chen, and A. C. Evans, “Small-world anatomical networks in the human brain revealed by cortical thickness from MRI,” Cerebral Cortex, vol. 17, no. 10, pp. 2407–2419, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. C. J. Stam, “Functional connectivity patterns of human magnetoencephalographic recordings: a “small-world” network?” Neuroscience Letters, vol. 355, no. 1-2, pp. 25–28, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. Z. Yao, Y. Zhang, L. Lin, Y. Zhou, C. Xu, and T. Jiang, “Abnormal cortical networks in mild cognitive impairment and alzheimer's disease,” PLoS Computational Biology, vol. 6, no. 11, Article ID e1001006, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. D. J. Watts and S. H. Strogatz, “Collective dynamics of “small-world” networks,” Nature, vol. 393, no. 6684, pp. 440–442, 1998. View at Google Scholar · View at Scopus
  7. M. P. van den Heuvel and H. E. Hulshoff Pol, “Exploring the brain network: a review on resting-state fMRI functional connectivity,” European Neuropsychopharmacology, vol. 20, no. 8, pp. 519–534, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Tian, J. Wang, C. Yan, and Y. He, “Hemisphere- and gender-related differences in small-world brain networks: a resting-state functional MRI study,” NeuroImage, vol. 54, no. 1, pp. 191–202, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. C. J. Stam, B. F. Jones, G. Nolte, M. Breakspear, and P. Scheltens, “Small-world networks and functional connectivity in Alzheimer's disease,” Cerebral Cortex, vol. 17, no. 1, pp. 92–99, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Shu, Y. Liu, K. Li et al., “Diffusion tensor tractography reveals disrupted topological efficiency in white matter structural networks in multiple sclerosis,” Cereb Cortex, vol. 21, no. 11, pp. 2565–2577, 2011. View at Publisher · View at Google Scholar
  11. S. Micheloyannis, E. Pachou, C. J. Stam et al., “Small-world networks and disturbed functional connectivity in schizophrenia,” Schizophrenia Research, vol. 87, no. 1–3, pp. 60–66, 2006. View at Google Scholar
  12. B. Fischl and A. M. Dale, “Measuring the thickness of the human cerebral cortex from magnetic resonance images,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 20, pp. 11050–11055, 2000. View at Google Scholar · View at Scopus
  13. V. Singh, H. Chertkow, J. P. Lerch, A. C. Evans, A. E. Dorr, and N. J. Kabani, “Spatial patterns of cortical thinning in mild cognitive impairment and Alzheimer's disease,” Brain, vol. 129, no. 11, pp. 2885–2893, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. V. Julkunen, E. Niskanen, J. Koikkalainen et al., “Differences in cortical thickness in healthy controls, subjects with mild cognitive impairment, and Alzheimer's disease patients: a longitudinal study,” Journal of Alzheimer's Disease, vol. 21, no. 4, pp. 1141–1151, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Thambisetty, J. Wan, A. Carass, Y. An, J. L. Prince, and S. M. Resnick, “Longitudinal changes in cortical thickness associated with normal aging,” NeuroImage, vol. 52, no. 4, pp. 1215–1223, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Y. Bookheimer, A. C. Burggren, B. Renner et al., “Thickness in entorhinal and subicular cortex predicts episodic memory decline in mild cognitive impairment,” International Journal of Alzheimer's Disease, vol. 2011, Article ID 956053, 9 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Im, J. M. Lee, S. Won Seo, S. Hyung Kim, S. I. Kim, and D. L. Na, “Sulcal morphology changes and their relationship with cortical thickness and gyral white matter volume in mild cognitive impairment and Alzheimer's disease,” NeuroImage, vol. 43, no. 1, pp. 103–113, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. S. W. Seo, K. Im, J. M. Lee et al., “Cortical thickness in single- versus multiple-domain amnestic mild cognitive impairment,” NeuroImage, vol. 36, no. 2, pp. 289–297, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. R. S. Desikan, H. J. Cabral, C. P. Hess et al., “Automated MRI measures identify individuals with mild cognitive impairment and Alzheimers disease,” Brain, vol. 132, part 8, pp. 2048–2057, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. O. Querbes, F. Aubry, J. Pariente et al., “Early diagnosis of Alzheimers disease using cortical thickness: impact of cognitive reserve,” Brain, vol. 132, part 8, pp. 2036–2047, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Wang, F. C. Goldstein, E. Veledar et al., “Alterations in cortical thickness and white matter integrity in mild cognitive impairment measured by whole-brain cortical thickness mapping and diffusion tensor imaging,” American Journal of Neuroradiology, vol. 30, no. 5, pp. 893–899, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. L. K. McEvoy, C. Fennema-Notestine, J. C. Roddey et al., “Alzheimer disease: quantitative structural neuroimaging for detection and prediction of clinical and structural changes in mild cognitive impairment,” Radiology, vol. 251, no. 1, pp. 195–205, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. R. O. Roberts, Y. E. Geda, D. S. Knopman et al., “The incidence of MCI differs by subtype and is higher in men: the Mayo Clinic Study of Aging,” Neurology, vol. 78, no. 5, pp. 342–351, 2012. View at Google Scholar
  24. G. W. Small, V. Kepe, L. M. Ercoli et al., “PET of brain amyloid and tau in mild cognitive impairment,” The New England Journal of Medicine, vol. 355, no. 25, pp. 2652–2663, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Drzezga, J. A. Becker, K. R. A. van Dijk et al., “Neuronal dysfunction and disconnection of cortical hubs in non-demented subjects with elevated amyloid burden,” Brain, vol. 134, part 6, pp. 1635–1646, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. C. R. Jack Jr., V. J. Lowe, M. L. Senjem et al., “11C PiB and structural MRI provide complementary information in imaging of Alzheimer's disease and amnestic mild cognitive impairment,” Brain, vol. 131, no. 3, pp. 665–680, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. J. L. Woodard, M. Seidenberg, K. A. Nielson et al., “Semantic memory activation in amnestic mild cognitive impairment,” Brain, vol. 132, no. 8, pp. 2068–2078, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. R. L. Buckner, J. Sepulcre, T. Talukdar et al., “Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer's disease,” The Journal of Neuroscience, vol. 29, no. 6, pp. 1860–1873, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. W. de Haan, Y. A. L. Pijnenburg, R. L. M. Strijers et al., “Functional neural network analysis in frontotemporal dementia and Alzheimer's disease using EEG and graph theory,” BMC Neuroscience, vol. 10, article 101, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. He, Z. Chen, and A. Evans, “Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer's disease,” The Journal of Neuroscience, vol. 28, no. 18, pp. 4756–4766, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. E. J. Sanz-Arigita, M. M. Schoonheim, J. S. Damoiseaux et al., “Loss of “small-world” networks in Alzheimer's disease: graph analysis of FMRI resting-state functional connectivity,” PLoS ONE, vol. 5, no. 11, Article ID e13788, 2010. View at Google Scholar
  32. C. J. Stam, W. de Haan, A. Daffertshofer et al., “Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer's disease,” Brain, vol. 132, part 1, pp. 213–224, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Supekar, V. Menon, D. Rubin, M. Musen, and M. D. Greicius, “Network analysis of intrinsic functional brain connectivity in Alzheimer's disease,” PLoS Computational Biology, vol. 4, no. 6, Article ID e1000100, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Zhou, J. H. Dougherty, K. F. Hubner, B. Bai, R. L. Cannon, and R. K. Hutson, “Abnormal connectivity in the posterior cingulate and hippocampus in early Alzheimer's disease and mild cognitive impairment,” Alzheimer's and Dementia, vol. 4, no. 4, pp. 265–270, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. D. S. Knopman, B. F. Boeve, and R. C. Petersen, “Essentials of the proper diagnoses of mild cognitive impairment, dementia, and major subtypes of dementia,” Mayo Clinic Proceedings, vol. 78, no. 10, pp. 1290–1308, 2003. View at Google Scholar · View at Scopus
  36. C. Destrieux, B. Fischl, A. Dale, and E. Halgren, “Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature,” NeuroImage, vol. 53, no. 1, pp. 1–15, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. B. Fischl, A. van der Kouwe, C. Destrieux et al., “Automatically parcellating the human cerebral cortex,” Cerebral Cortex, vol. 14, no. 1, pp. 11–22, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. B. C. Dickerson, A. Bakkour, D. H. Salat et al., “The cortical signature of Alzheimer's disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals,” Cerebral Cortex, vol. 19, no. 3, pp. 497–510, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. Z. J. Chen, Y. He, P. Rosa-Neto, J. Germann, and A. C. Evans, “Revealing modular architecture of human brain structural networks by using cortical thickness from MRI,” Cerebral Cortex, vol. 18, no. 10, pp. 2374–2381, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. P. Hagmann, L. Cammoun, X. Gigandet et al., “Mapping the structural core of human cerebral cortex,” PLoS Biology, vol. 6, no. 7, article e159, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. Gong and Z. Zhang, “Global robustness and identifiability of random, scale-free, and small-world networks,” Annals of the New York Academy of Sciences, vol. 1158, pp. 82–92, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Pace and K. Graham, “Mild cognitive impairment: the transition to Alzheimer's disease,” JAAPA, vol. 21, no. 8, pp. 40–44, 2008. View at Google Scholar · View at Scopus
  43. R. C. Petersen, “Mild cognitive impairment: transition between aging and Alzheimer's disease,” Neurologia, vol. 15, no. 3, pp. 93–101, 2000. View at Google Scholar · View at Scopus
  44. Y. He, Z. Chen, G. Gong, and A. Evans, “Neuronal networks in Alzheimer's disease,” Neuroscientist, vol. 15, no. 4, pp. 333–350, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. S. L. Risacher, A. J. Saykin, J. D. West, L. Shen, H. A. Firpi, and B. C. McDonald, “Baseline MRI predictors of conversion from MCI to probable AD in the ADNI cohort,” Current Alzheimer Research, vol. 6, no. 4, pp. 347–361, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. E. R. Sowell, B. S. Peterson, E. Kan et al., “Sex differences in cortical thickness mapped in 176 healthy individuals between 7 and 87 years of age,” Cerebral Cortex, vol. 17, no. 7, pp. 1550–1560, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. C. T. Whitlow, R. Casanova, and J. A. Maldjian, “Effect of resting-state functional MR imaging duration on stability of graph theory metrics of brain network connectivity,” Radiology, vol. 259, no. 2, pp. 516–524, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. C. R. Jack Jr., V. J. Lowe, S. D. Weigand et al., “Serial PIB and MRI in normal, mild cognitive impairment and Alzheimers disease: implications for sequence of pathological events in Alzheimers disease,” Brain, vol. 132, part 5, pp. 1355–1365, 2009. View at Publisher · View at Google Scholar · View at Scopus