Table of Contents
ISRN Dentistry
Volume 2013 (2013), Article ID 573262, 10 pages
http://dx.doi.org/10.1155/2013/573262
Research Article

Synergistic Effects of Nonthermal Plasma and Disinfecting Agents against Dental Biofilms In Vitro

1Unit of Periodontology, Department of Restorative Dentistry, Periodontology and Endodontology, Ernst-Moritz-Arndt University Greifswald, Walther-Rathenau-Straße 49a, 17487 Greifswald, Germany
2Institute for Medical Informatics, Biometry and Epidemiology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
3Institute for Hygiene and Environmental Medicine, Ernst-Moritz-Arndt University Greifswald, Walther-Rathenau-Straße 49a, 17475 Greifswald, Germany
4Robert Koch Institut, Nordufer 20, 13353 Berlin, Germany
5Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Straße 2, 17489 Greifswald, Germany

Received 14 July 2013; Accepted 7 August 2013

Academic Editors: H. S. Cardash and G. H. Sperber

Copyright © 2013 Ina Koban et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. E. Morfill, M. G. Kong, and J. L. Zimmermann, “Focus on plasma medicine,” New Journal of Physics, vol. 11, no. 11, Article ID 115011, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Stoffels, A. J. Flikweert, W. W. Stoffels, and G. M. W. Kroesen, “Plasma needle: a non-destructive atmospheric plasma source for fine surface treatment of (bio)materials,” Plasma Sources Science and Technology, vol. 11, no. 4, pp. 383–388, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Kramer, O. Assadian, H. Below et al., “Perspektiven der Plasmamedizin,” Vakuum in Forschung Und Praxis, vol. 22, no. 2, pp. 33–38, 2010. View at Google Scholar
  4. I. Koban, K. Duske, L. Jablonowski et al., “Atmospheric plasma enhances wettability and osteoblast spreading on dentin in vitro: proof-of-principle,” Plasma Processes and Polymers, vol. 8, no. 10, pp. 975–982, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. I. Koban, B. Holtfreter, N.-O. Hübner et al., “Antimicrobial efficacy of non-thermal plasma in comparison to chlorhexidine against dental biofilms on titanium discs in vitro—proof of principle experiment,” Journal of Clinical Periodontology, vol. 38, no. 10, pp. 956–965, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. I. Koban, R. Matthes, N.-O. Hübner et al., “Treatment of Candida albicans biofilms with low-temperature plasma induced by dielectric barrier discharge and atmospheric pressure plasma jet,” New Journal of Physics, vol. 12, Article ID 073039, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Fridman, G. Friedman, A. Gutsol, A. B. Shekhter, V. N. Vasilets, and A. Fridman, “Applied plasma medicine,” Plasma Processes and Polymers, vol. 5, no. 6, pp. 503–533, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. K.-D. Weltmann, E. Kindel, R. Brandenburg et al., “Atmospheric pressure plasma jet for medical therapy: plasma parameters and risk estimation,” Contributions to Plasma Physics, vol. 49, no. 9, pp. 631–640, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Halfmann, N. Bibinov, J. Wunderlich, and P. Awakowicz, “A double inductively coupled plasma for sterilization of medical devices,” Journal of Physics D, vol. 40, no. 14, pp. 4145–4154, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Halfmann, B. Denis, N. Bibinov, J. Wunderlich, and P. Awakowicz, “Identification of the most efficient VUV/UV radiation for plasma based inactivation of Bacillus atrophaeus spores,” Journal of Physics D, vol. 40, no. 19, pp. 5907–5911, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Merritt, F. Qi, S. D. Goodman, M. H. Anderson, and W. Shi, “Mutation of luxS affects biofilm formation in Streptococcus mutans,” Infection and Immunity, vol. 71, no. 4, pp. 1972–1979, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Fujioka-Hirai, Y. Akagawa, and S. Minagi, “Adherence of Streptococcus mutans to implant materials,” Journal of Biomedical Materials Research, vol. 21, no. 7, pp. 913–920, 1987. View at Google Scholar · View at Scopus
  13. L. Netuschil, M. Brecx, K. G. Vohrer, and P. Riethe, “Vital fluorescence to assess in vitro and in vivo the antibacterial effects of amalgams,” Acta stomatologica Belgica, vol. 93, no. 3, pp. 129–134, 1996. View at Google Scholar · View at Scopus
  14. G. Müller, Y. Winkler, and A. Kramer, “Antibacterial activity and endotoxin-binding capacity of Actisorb Silver 220,” Journal of Hospital Infection, vol. 53, no. 3, pp. 211–214, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. S. K. Filoche, C. H. Sissons, R. E. J. Sladek, and E. Stoffels, “Cold plasma treatment of in vitro dental plaque,” in Plasma Assisted Decontamination of Biological and Chemical Agents, S. Güceri and A. Fridman,, Eds., pp. 65–78, Springer, Dordrecht, The Netherlands, 2008. View at Google Scholar
  16. G. Bogosian and E. V. Bourneuf, “A matter of bacterial life and death,” EMBO Reports, vol. 2, no. 9, pp. 770–774, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Montemayor, A. Costan, F. Lucena et al., “The combined performance of UV light and chlorine during reclaimed water disinfection,” Water Science and Technology, vol. 57, no. 6, pp. 935–940, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. C. L. Hawkins, M. D. Rees, and M. J. Davies, “Superoxide radicals can act synergistically with hypochlorite to induce damage to proteins,” FEBS Letters, vol. 510, no. 1-2, pp. 41–44, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Banin, K. M. Brady, and E. P. Greenberg, “Chelator-induced dispersal and killing of Pseudomonas aeruginosa cells in a biofilm,” Applied and Environmental Microbiology, vol. 72, no. 3, pp. 2064–2069, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. I. Raad, I. Chatzinikolaou, G. Chaiban et al., “In vitro and ex vivo activities of minocycline and EDTA against microorganisms embedded in biofilm on catheter surfaces,” Antimicrobial Agents and Chemotherapy, vol. 47, no. 11, pp. 3580–3585, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. J. B. Rodríguez, A. Mutis, M. C. Yeber, J. Freer, J. Baeza, and H. D. Mansilla, “Chemical degradation of EDTA and DTPA in a totally chlorine free (TCF) effluent,” Water Science and Technology, vol. 40, no. 11-12, pp. 267–272, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Sorensen, S. Zurell, and F. H. Frimmel, “Degradation pathway of the photochemical oxidation of ethylenediaminetetraacetate (EDTA) in the UV/H2O2-process,” Acta Hydrochimica et Hydrobiologica, vol. 26, no. 2, pp. 109–115, 1998. View at Google Scholar
  23. J. S. Reidmiller, J. D. Baldeck, G. C. Rutherford, and R. E. Marquis, “Characterization of UV-peroxide killing of bacterial spores,” Journal of Food Protection, vol. 66, no. 7, pp. 1233–1240, 2003. View at Google Scholar · View at Scopus
  24. P. B. L. Chang and T. M. Young, “Kinetics of methyl tert-butyl ether degradation and by-product formation during UV/hydrogen peroxide water treatment,” Water Research, vol. 34, no. 8, pp. 2233–2240, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. O. Johansson, J. Bood, M. Aldén, and U. Lindblad, “Hydroxyl radical consumption following photolysis of vapor-phase hydrogen peroxide at 266 nm: Implications for photofragmentation laser-induced fluorescence measurements of hydrogen peroxide,” Applied Physics B, vol. 97, no. 2, pp. 515–522, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. Q.-F. Zeng, J. Fu, Y.-T. Shi, D.-S. Xia, and H.-L. Zhu, “Adsorbable organic halogens generation and reduction during degradation of phenol by UV radiation/sodium hypochlorite,” Water Environment Research, vol. 81, no. 2, pp. 178–183, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Bender, R. Matthes, E. Kindel et al., “The irritation potential of nonthermal atmospheric pressure plasma in the HET-CAM,” Plasma Processes and Polymers, vol. 7, no. 3-4, pp. 318–320, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Müller and A. Kramer, “Biocompatibility index of antiseptic agents by parallel assessment of antimicrobial activity and cellular cytotoxicity,” Journal of Antimicrobial Chemotherapy, vol. 61, no. 6, pp. 1281–1287, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. G. Müller, A. Kramer, and J. Siebert, “Effectiveness of octenidine and chlorhexidine in the artificially contaminated 3-D-culture of human keratinocytes,” GMS Krankenhaushyg Interdiszip, vol. 4, no. 2, p. Doc14, 2009. View at Google Scholar