Table of Contents
ISRN Dentistry
Volume 2013 (2013), Article ID 582051, 9 pages
http://dx.doi.org/10.1155/2013/582051
Research Article

The Effect of Different Storage Conditions on the Physical Properties of Pigmented Medical Grade I Silicone Maxillofacial Material

1Department of Oral and Maxillofacial Rehabilitation, Faculty of Dentistry, King Abdulaziz University, P.O. Box 80209, Jeddah 21589, Saudi Arabia
2Faculty of Dentistry, Alexandria University, Alexandria 21534, Egypt

Received 10 January 2013; Accepted 19 February 2013

Academic Editors: E. T. Giampaolo and A. Jäger

Copyright © 2013 Ayman A. Al-Dharrab et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. C. Goiato, M. F. Haddad, M. A. C Sinhoreti, D. M. dos Santos, A. A. Pesqueira, and A. Moreno, “Influence of opacifiers on dimensional stability and detail reproduction of maxillofacial silicone elastomer,” BioMedical Engineering, vol. 9, article 85, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. A. A. de Sousa and B. S. C. Mattos, “Magnetic retention and bar-clip attachment for implant-retained auricular prostheses: A comparative analysis,” International Journal of Prosthodontics, vol. 21, no. 3, pp. 233–236, 2008. View at Google Scholar · View at Scopus
  3. P. F. Allen, G. Watson, L. Stassen, and A. S. McMillan, “Peri-implant soft tissue maintenance in patients with craniofacial implant retained prostheses,” International Journal of Oral and Maxillofacial Surgery, vol. 29, no. 2, pp. 99–103, 2000. View at Google Scholar · View at Scopus
  4. R. W. C. Chung, A. S. C. Siu, F. C. S. Chu, and T. W. Chow, “Magnet-retained auricular prosthesis with an implant-supported composite bar: a clinical report,” Journal of Prosthetic Dentistry, vol. 89, no. 5, pp. 446–449, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. B. B. Turhan, H. Yılmaz, C. S. Aydın, I. Karakoca, and K. Yılmaz, “In vitro cytotoxicity of maxillofacial silicone elastomers: effect of accelerated aging,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 89B, no. 1, pp. 122–126, 2009. View at Publisher · View at Google Scholar
  6. J. Beumer, T. A. Curtis, and M. T. Maurinick, Maxillofacial Rehabilitation: Prosthodontic and Surgical Considerations, Ishiyaku EuroAmerica, St. Louis, Mo, USA, 1996.
  7. R. J. Fonseca, Oral and Maxillofacial Surgery. Reconstructive and Implant Surgery, vol. 7, W. B. Saunders, Philadelphia, Pa, USA, 1st edition, 2000.
  8. J. G. Nørby, “The origin and the meaning of the little p in pH,” Trends in Biochemical Sciences, vol. 25, no. 1, pp. 36–37, 2000. View at Publisher · View at Google Scholar
  9. G. Yosipovitch and J. Hu, “The importance of skin pH,” Skin & Aging, vol. 11, no. 3, pp. 88–93, 2003. View at Google Scholar
  10. G. L. Polyzois, “Color stability of facial silicone prosthetic polymers after outdoor weathering,” The Journal of Prosthetic Dentistry, vol. 82, no. 4, pp. 447–450, 1999. View at Google Scholar · View at Scopus
  11. U. S. Maller, K. S. Karthik, and S. V. Maller, “Maxillofacial prosthetic materials—past and present trends,” Journal of Indian Academy of Dental Specialists, vol. 1, no. 2, pp. 25–30, 2010. View at Google Scholar
  12. R. S. Maxwell, R. Cohenour, W. Sung, D. Solyom, and M. Patel, “The effects of γ-radiation on the thermal, mechanical, and segmental dynamics of a silica filled, room temperature vulcanized polysiloxane rubber,” Polymer Degradation and Stability, vol. 80, no. 3, pp. 443–450, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. P. N. Eleni, I. Katsavou, M. K. Krokida, and G. L. Polyzois, “Color stability of facial silicone prosthetic elastomers after artificial weathering,” Dental Research Journal, vol. 5, no. 2, pp. 71–79, 2008. View at Google Scholar
  14. S. Kiat-Amnuay, P. J. Waters, D. Roberts, and L. Gettleman, “Adhesive retention of silicone and chlorinated polyethylene for maxillofacial prostheses,” Journal of Prosthetic Dentistry, vol. 99, no. 6, pp. 483–488, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Gunay, C. Kurtoglu, A. Atay, B. Karayazgan, and C. C. Gurbuz, “Effect of tulle on the mechanical properties of a maxillofacial silicone elastomer,” Dental Materials Journal, vol. 27, no. 6, pp. 775–779, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. J. B. Gonzalez, “Polyurethane elastomers for facial prosthesis,” The Journal of Prosthetic Dentistry, vol. 39, pp. 179–187, 1978. View at Publisher · View at Google Scholar
  17. S. K. Khindria, S. Bansal, and M. Kansal, “Maxillofacial prosthetic materials,” Journal of Indian Prosthodontist Society, vol. 9, no. 1, pp. 2–5, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. F. P. Gasparro, M. Mitchnick, and J. F. Nash, “A review of sunscreen safety and efficacy,” Photochemistry and Photobiology, vol. 68, no. 3, pp. 243–256, 1998. View at Google Scholar · View at Scopus
  19. N. J. Lowe, M. A. Shaath, and M. A. Pathak, Sunscreen Development, Evaluation and Regulatory Aspects, Marcel Dekker, New York, NY, USA, 1997.
  20. D. N. Mancuso, M. C. Goiato, and D. M. dos Santos, “Color stability after accelerated aging of two silicones, pigmented or not, for use in facial prostheses,” Brazilian Oral Research, vol. 23, no. 2, pp. 144–148, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Yu, A. Koran III, and R. G. Craig, “Physical properties of maxillofacial elastomers under conditions of accelerated aging,” Journal of Dental Research, vol. 59, no. 6, pp. 1041–1047, 1980. View at Google Scholar · View at Scopus
  22. T. Aziz, M. Waters, and R. Jagger, “Analysis of the properties of silicone rubber maxillofacial prosthetic materials,” Journal of Dentistry, vol. 31, no. 1, pp. 67–74, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. Commission Internationale de l’Eclairage (CIE), Colorimetry, Official Recommendations of the International Commission on Illumination, Bureau Central de la CIE, Paris, France, 2nd edition, 1985, Publication CIE no. 15.2 (TC-1.3).
  24. U. H. Mohite, J. L. Sandrik, M. F. Land, and G. Byrne, “Environmental factors affecting mechanical properties of facial prosthetic elastomers,” The International Journal of Prosthodontics, vol. 7, no. 5, pp. 479–486, 1994. View at Google Scholar · View at Scopus
  25. To International Organization for Standardization. Textiles-Tests for color fastness, Part E04: Color fastness perspiration. ISO 105-E04, 2008.
  26. American Society for Testing and Materials, Standard Test Method for Rubber Property—Durometer Hardness. ASTM Standard D 2240, American Society for Testing and Materials, West Conshohocken, Pa, USA, 2005.
  27. J. B. Taylor, A. L. Carrano, and S. G. Kandlikar, “Characterization of the effect of surface roughness and texture on fluid flow-past, present, and future,” International Journal of Thermal Sciences, vol. 45, no. 10, pp. 962–968, 2006. View at Publisher · View at Google Scholar
  28. M. Amin, M. Akbar, and S. Amin, “Hydrophobicity of silicone rubber used for outdoor insulation (an overview),” Reviews on Advanced Materials Science, vol. 16, no. 1-2, pp. 10–26, 2007. View at Google Scholar · View at Scopus
  29. T. Sampe, A. Ito, T. Hirayama et al., in Proceedings of the 8th Korea-Japan Joint Symposium on Electrical Discharge and High Voltage Engineering, p. 64, Chongqing, China, 2003.
  30. W. Santawisuk, W. Kanchanavasita, C. Sirisinha, and C. Harnirattisai, “Dynamic viscoelastic properties of experimental silicone soft lining materials,” Dental Materials Journal, vol. 29, no. 4, pp. 454–460, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. A. M. Guiotti, M. C. Goiato, and D. M. dos Santos, “Evaluation of the shore a hardness of silicone for facial prosthesis as to the effect of storage period and chemical disinfection,” Journal of Craniofacial Surgery, vol. 21, no. 2, pp. 323–327, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. E. R. Dootz, A. Koran III, and R. G. Craig, “Physical properties of three maxillofacial materials as a function of accelerated aging,” The Journal of Prosthetic Dentistry, vol. 71, no. 4, pp. 379–383, 1994. View at Google Scholar · View at Scopus
  33. B. Wongpattarakij, Factorial effects on color stability of facial silicones [MSc thesis in Prosthodontics], Faculty of Dentistry, Mahidol University, Nakhon Pathom, Thailand, 2005.
  34. Cosmesil & Esefex Series Materials—An Overview. Product Catalogue, Principality Medical Limited, South Wales, UK, 2005, http://www.cosmesil.com/, http://www.Technovent.com/.
  35. J. F. Wolfaardt, H. D. Chandler, and B. A. Smith, “Mechanical properties of a new facial prosthetic material,” The Journal of Prosthetic Dentistry, vol. 53, no. 2, pp. 228–234, 1985. View at Google Scholar · View at Scopus
  36. S. Fang, Z. Yimin, S. Longquan, and P. Jingguang, “The test of the mechanical properties of SY-28. SY-20 and MDX-4-4210 silicone elastomers,” Journal of US-China Medical Science, vol. 3, pp. 36–40, 2006. View at Google Scholar
  37. K. Stathi, P. A. Tarantili, and G. Polyzois, “The effect of accelerated ageing on performance properties of addition type silicone biomaterials,” Journal of Materials Science: Materials in Medicine, vol. 21, no. 5, pp. 1403–1411, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. G. L. Polyzois, P. A. Tarantili, M. J. Frangou, and A. G. Andreopoulos, “Physical properties of a silicone prosthetic elastomer stored in simulated skin secretions,” The Journal of Prosthetic Dentistry, vol. 83, no. 5, pp. 572–577, 2000. View at Google Scholar · View at Scopus
  39. M. G. J. Waters, R. G. Jagger, and R. W. Winter, “Effect of surface modified fillers on the water absorption of a (RTV) silicone denture soft lining material,” Journal of Dentistry, vol. 24, no. 4, pp. 297–300, 1996. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Koran III, J. M. Powers, P. J. Lepeak, and R. G. Craig, “Stain resistance of maxillofacial materials,” Journal of Dental Research, vol. 58, no. 5, pp. 1455–1460, 1979. View at Google Scholar · View at Scopus
  41. X-Rite, “Incorporated. SP60 Series Sphere spectrophotometer,” http://www.xrite.com/documents/manuals/en/SP62-601_SP60_Series_Getting_Started_en.pdf.
  42. H. Yanagisawa, “Discoloration of maxillofacial silicone rubber due to lipid absorption and oxidation,” Kokubyo Gakkai Zasshi, vol. 54, no. 1, pp. 190–207, 1987. View at Google Scholar · View at Scopus
  43. M. C. Goiato, A. A. Pesqueira, D. M. dos Santos, and S. F. D. C. Dekon, “Evaluation of hardness and surface roughness of two maxillofacial silicones following disinfection,” Brazilian Oral Research, vol. 23, no. 1, pp. 49–53, 2009. View at Google Scholar · View at Scopus
  44. J. E. Mark, Polymer Data Handbook, Oxford University Press, Oxford, UK, 1999.
  45. X. Wang, S. Kumagai, and N. Yoshimura, “Fractal analysis on the recovery of contaminant properties of silicone rubber insulator against acid rain,” in Proceedings of the International Symposium on Electrical Insulating Materials, pp. 619–622, September 1998. View at Scopus