Table of Contents
ISRN Transplantation
Volume 2013 (2013), Article ID 582689, 25 pages
http://dx.doi.org/10.5402/2013/582689
Review Article

Cell Transplantation and “Stem Cell Therapy” in the Treatment of Myopathies: Many Promises in Mice, Few Realities in Humans

1Neurosciences Division-Human Genetics, CHUQ Research Center-CHUL, Quebec, QC, Canada
2Unité de Recherche en Génétique Humaine, Centre Hospitalier de l'Université Laval, 2705 boulevard Laurier, Québec, QC, Canada G1V 4G2

Received 14 July 2013; Accepted 21 August 2013

Academic Editors: S. V. Brodsky, W. Lim, and C. Marchese

Copyright © 2013 Daniel Skuk. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Ishikawa, T. Miura, Y. Ishikawa et al., “Duchenne muscular dystrophy: survival by cardio-respiratory interventions,” Neuromuscular Disorders, vol. 21, no. 1, pp. 47–51, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. J. D. Gumerson and D. E. Michele, “The dystrophin-glycoprotein complex in the prevention of muscle damage,” Journal of Biomedicine and Biotechnology, vol. 2011, Article ID 210797, 13 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Skuk, M. Goulet, and J. P. Tremblay, “Preservation of muscle spindles in a 27-year-old Duchenne muscular dystrophy patient: importance for regenerative medicine strategies,” Muscle & Nerve, vol. 41, no. 5, pp. 729–730, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. B. H. Lipton and E. Schultz, “Developmental fate of skeletal muscle satellite cells,” Science, vol. 205, no. 4412, pp. 1292–1294, 1979. View at Google Scholar · View at Scopus
  5. D. J. Watt, K. Lambert, and J. E. Morgan, “Incorporation of donor muscle precursor cells into an area of muscle regeneration in the host mouse,” Journal of the Neurological Sciences, vol. 57, no. 2-3, pp. 319–331, 1982. View at Google Scholar · View at Scopus
  6. D. Yaffe and M. Feldman, “The formation of hybrid multinucleated muscle fibers from myoblasts of different genetic origin,” Developmental Biology, vol. 11, no. 2, pp. 300–317, 1965. View at Google Scholar · View at Scopus
  7. T. A. Partridge, J. E. Morgan, G. R. Coulton, E. P. Hoffman, and L. M. Kunkel, “Conversion of mdx myofibres from dystrophin-negative to -positive by injection of normal myoblasts,” Nature, vol. 337, no. 6203, pp. 176–179, 1989. View at Google Scholar · View at Scopus
  8. G. Karpati, Y. Pouliot, E. Zubrzycka-Gaarn et al., “Dystrophin is expressed in mdx skeletal muscle fibers after normal myoblast implantation,” American Journal of Pathology, vol. 135, no. 1, pp. 27–32, 1989. View at Google Scholar · View at Scopus
  9. I. Kinoshita, J.-T. Vilquin, B. Guerette, I. Asselin, R. Roy, and J. P. Tremblay, “Very efficient myoblast allotransplantation in mice under FK506 immunosuppression,” Muscle & Nerve, vol. 17, no. 12, pp. 1407–1415, 1994. View at Publisher · View at Google Scholar · View at Scopus
  10. J. R. Mendell, J. T. Kissel, A. A. Amato et al., “Myoblast transfer in the treatment of Duchenne's muscular dystrophy,” New England Journal of Medicine, vol. 333, no. 13, pp. 832–838, 1995. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Skuk, M. Goulet, B. Roy et al., “Dystrophin expression in muscles of Duchenne muscular dystrophy patients after high-density injections of normal myogenic cells,” Journal of Neuropathology and Experimental Neurology, vol. 65, no. 4, pp. 371–386, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Skuk, M. Goulet, B. Roy et al., “First test of a “high-density injection” protocol for myogenic cell transplantation throughout large volumes of muscles in a Duchenne muscular dystrophy patient: eighteen months follow-up,” Neuromuscular Disorders, vol. 17, no. 1, pp. 38–46, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Skuk, B. Roy, M. Goulet et al., “Dystrophin expression in myofibers of Duchenne muscular dystrophy patients following intramuscular injections of normal myogenic cells,” Molecular Therapy, vol. 9, no. 3, pp. 475–482, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. G. K. Pavlath, K. Rich, S. G. Webster, and H. M. Blau, “Localization of muscle gene products in nuclear domains,” Nature, vol. 337, no. 6207, pp. 570–573, 1989. View at Google Scholar · View at Scopus
  15. E. Ralston and Z. W. Hall, “Restricted distribution of mRNA produced from a single nucleus in hybrid myotubes,” Journal of Cell Biology, vol. 119, no. 5, pp. 1063–1068, 1992. View at Publisher · View at Google Scholar · View at Scopus
  16. Z. W. Hall and E. Ralston, “Nuclear domains in muscle cells,” Cell, vol. 59, no. 5, pp. 771–772, 1989. View at Publisher · View at Google Scholar · View at Scopus
  17. F. Chretien, P. A. Dreyfus, C. Christov et al., “In vivo fusion of circulating fluorescent cells with dystrophin-deficient myofibers results in extensive sarcoplasmic fluorescence expression but limited dystrophin sarcolemmal expression,” American Journal of Pathology, vol. 166, no. 6, pp. 1741–1748, 2005. View at Google Scholar · View at Scopus
  18. E. Gussoni, H. M. Blau, and L. M. Kunkel, “The fate of individual myoblasts after transplantation into muscles of DMD patients,” Nature Medicine, vol. 3, no. 9, pp. 970–974, 1997. View at Publisher · View at Google Scholar · View at Scopus
  19. H. S. Alameddine, J. P. Louboutin, M. Dehaupas, A. Sebille, and M. Fardeau, “Functional recovery induced by satellite cell grafts in irreversibly injured muscles,” Cell Transplantation, vol. 3, no. 1, pp. 3–14, 1994. View at Google Scholar · View at Scopus
  20. A. Wernig, M. Zweyer, and A. Irintchev, “Function of skeletal muscle tissue formed after myoblast transplantation into irradiated mouse muscles,” Journal of Physiology, vol. 522, no. 2, pp. 333–345, 2000. View at Google Scholar · View at Scopus
  21. A. Wernig, A. Irintchev, and G. Lange, “Functional effects of myoblast implantation into histoincompatible mice with or without immunosuppression,” Journal of Physiology, vol. 484, no. 2, pp. 493–504, 1995. View at Google Scholar · View at Scopus
  22. A. Irintchev, M. Langer, M. Zweyer, R. Theisen, and A. Wernig, “Functional improvement of damaged adult mouse muscle by implantation of primary myoblasts,” Journal of Physiology, vol. 500, no. 3, pp. 775–785, 1997. View at Google Scholar · View at Scopus
  23. R. Vracko and E. P. Benditt, “Basal lamina: the scaffold for orderly cell replacement. Observations on regeneration of injured skeletal muscle fibers and capillaries,” Journal of Cell Biology, vol. 55, no. 2, pp. 406–419, 1972. View at Google Scholar · View at Scopus
  24. A. Irintchev, J. D. Rosenblatt, M. J. Cullen, M. Zweyer, and A. Wernig, “Ectopic skeletal muscles derived from myoblasts implanted under the skin,” Journal of Cell Science, vol. 111, no. 22, pp. 3287–3297, 1998. View at Google Scholar · View at Scopus
  25. I. Kinoshita, J. Vilquin, and J. P. Tremblay, “Mechanism of increasing dystrophin-positive myofibers by myoblast transplantation: study using mdx/β-galactosidase transgenic mice,” Acta Neuropathologica, vol. 91, no. 5, pp. 489–493, 1996. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Satoh, C. Labrecque, and J. P. Tremblay, “Myotubes can be formed within implanted adipose tissue,” Transplantation Proceedings, vol. 24, no. 6, pp. 3017–3019, 1992. View at Google Scholar · View at Scopus
  27. D. F. Pisani, C. A. Dechesne, S. Sacconi et al., “Isolation of a highly myogenic CD34-negative subset of human skeletal muscle cells free of adipogenic potential,” Stem Cells, vol. 28, no. 4, pp. 753–764, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Huang, R. G. Dennis, L. Larkin, and K. Baar, “Rapid formation of functional muscle in vitro using fibrin gels,” Journal of Applied Physiology, vol. 98, no. 2, pp. 706–713, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Okano and T. Matsuda, “Muscular tissue engineering: capillary-incorporated hybrid muscular tissues in vivo tissue culture,” Cell Transplantation, vol. 7, no. 5, pp. 435–442, 1998. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Yokota, Q. Lu, J. E. Morgan et al., “Expansion of revertant fibers in dystrophic mdx muscles reflects activity of muscle precursor cells and serves as an index of muscle regeneration,” Journal of Cell Science, vol. 119, no. 13, pp. 2679–2687, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. S.-N. Yao and K. Kurachi, “Implanted myoblasts not only fuse with myofibers but also survive as muscle precursor cells,” Journal of Cell Science, vol. 105, no. 4, pp. 957–963, 1993. View at Google Scholar · View at Scopus
  32. J. G. Gross and J. E. Morgan, “Muscle precursor cells injected into irradiated mdx mouse muscle persist after serial injury,” Muscle & Nerve, vol. 22, no. 2, pp. 174–185, 1999. View at Google Scholar
  33. X. Xu, Z. Yang, Q. Liu, and Y. Wang, “In vivo fluorescence imaging of muscle cell regeneration by transplanted EGFP-labeled myoblasts,” Molecular Therapy, vol. 18, no. 4, pp. 835–842, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. L. Heslop, J. R. Beauchamp, S. Tajbakhsh, M. E. Buckingham, T. A. Partridge, and P. S. Zammit, “Transplanted primary neonatal myoblasts can give rise to functional satellite cells as identified using the Myf5nlacZ/+ mouse,” Gene Therapy, vol. 8, no. 10, pp. 778–783, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. D. Skuk, M. Paradis, M. Goulet, P. Chapdelaine, D. M. Rothstein, and J. P. Tremblay, “Intramuscular transplantation of human postnatal myoblasts generates functional donor-derived satellite cells,” Molecular Therapy, vol. 18, no. 9, pp. 1689–1697, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Brimah, J. Ehrhardt, V. Mouly, G. S. Butler-Browne, T. A. Partridge, and J. E. Morgan, “Human muscle precursor cell regeneration in the mouse host is enhanced by growth factors,” Human Gene Therapy, vol. 15, no. 11, pp. 1109–1124, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Ehrhardt, K. Brimah, C. Adkin, T. Partridge, and J. Morgan, “Human muscle precursor cells give rise to functional satellite cells in vivo,” Neuromuscular Disorders, vol. 17, no. 8, pp. 631–638, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. E. Negroni, I. Riederer, S. Chaouch et al., “In vivo myogenic potential of human CD133+ muscle-derived stem cells: a quantitative study,” Molecular Therapy, vol. 17, no. 10, pp. 1771–1778, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. K. Vauchez, J. Marolleau, M. Schmid et al., “Aldehyde dehydrogenase activity identifies a population of human skeletal muscle cells with high myogenic capacities,” Molecular Therapy, vol. 17, no. 11, pp. 1948–1958, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Dellavalle, M. Sampaolesi, R. Tonlorenzi et al., “Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells,” Nature Cell Biology, vol. 9, no. 3, pp. 255–267, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. D. Montarras, J. Morgan, C. Colins et al., “Developmental biology: direct isolation of satellite cells for skeletal muscle regeneration,” Science, vol. 309, no. 5743, pp. 2064–2067, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. T. A. Partridge, M. Grounds, and J. C. Sloper, “Evidence of fusion between host and donor myoblasts in skeletal muscle grafts,” Nature, vol. 273, no. 5660, pp. 306–308, 1978. View at Google Scholar · View at Scopus
  43. P. S. Zammit, L. Heslop, V. Hudon et al., “Kinetics of myoblast proliferation show that resident satellite cells are competent to fully regenerate skeletal muscle fibers,” Experimental Cell Research, vol. 281, no. 1, pp. 39–49, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. R. Sambasivan, R. Yao, A. Kissenpfennig et al., “Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration,” Development, vol. 138, no. 17, pp. 3647–3656, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. C. Lepper, T. A. Partridge, and C. Fan, “An absolute requirement for pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration,” Development, vol. 138, no. 17, pp. 3639–3646, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. M. M. Murphy, J. A. Lawson, S. J. Mathew, D. A. Hutcheson, and G. Kardon, “Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration,” Development, vol. 138, no. 17, pp. 3625–3637, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. M. R. Lewis, “Rhythmical contraction of the skeletal muscle tissue observed in tissue culture,” American Journal of Physiology, vol. 38, pp. 153–161, 1915. View at Google Scholar
  48. Z. Yablonka-Reuveni and M. Nameroff, “Temporal differences in desmin expression between myoblasts from embryonic and adult chicken skeletal muscle,” Differentiation, vol. 45, no. 1, pp. 21–28, 1990. View at Google Scholar · View at Scopus
  49. J. Wang and I. Conboy, “Embryonic vs. adult myogenesis: challenging the “regeneration recapitulates development” paradigm,” Journal of Molecular Cell Biology, vol. 2, no. 1, pp. 1–4, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. C. Lepper, S. J. Conway, and C. Fan, “Adult satellite cells and embryonic muscle progenitors have distinct genetic requirements,” Nature, vol. 460, no. 7255, pp. 627–631, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. G. Cossu and M. Molinaro, “Chapter 9 cell heterogeneity in the myogenic lineage,” Current Topics in Developmental Biology C, vol. 23, pp. 185–208, 1987. View at Publisher · View at Google Scholar · View at Scopus
  52. A. Mauro, “Satellite cell of skeletal muscle fibers,” The Journal of Biophysical and Biochemical Cytology, vol. 9, pp. 493–495, 1961. View at Google Scholar · View at Scopus
  53. B. M. Carlson, “Muscle regeneration in amphibians and mammals: passing the torch,” Developmental Dynamics, vol. 226, no. 2, pp. 167–181, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. S. B. Charge and M. A. Rudnicki, “Cellular and molecular regulation of muscle regeneration,” Physiological Reviews, vol. 84, no. 1, pp. 209–238, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. R. N. Cooper, S. Tajbakhsh, V. Mouly, G. Cossu, M. Buckingham, and G. S. Butler-Browne, “In vivo satellite cell activation via Myf5 and MyoD in regenerating mouse skeletal muscle,” Journal of Cell Science, vol. 112, no. 17, pp. 2895–2901, 1999. View at Google Scholar · View at Scopus
  56. Z. Yablonka-Reuveni and A. J. Rivera, “Temporal expression of regulatory and structural muscle proteins during myogenesis of satellite cells on isolated adult rat fibers,” Developmental Biology, vol. 164, no. 2, pp. 588–603, 1994. View at Publisher · View at Google Scholar · View at Scopus
  57. P. S. Zammit, J. P. Golding, Y. Nagata, V. Hudon, T. A. Partridge, and J. R. Beauchamp, “Muscle satellite cells adopt divergent fates: a mechanism for self-renewal?” Journal of Cell Biology, vol. 166, no. 3, pp. 347–357, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. C. A. Collins, I. Olsen, P. S. Zammit et al., “Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche,” Cell, vol. 122, no. 2, pp. 289–301, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. I. R. Konigsberg, “The differentiation of cross-striated myofibrils in short term cell culture,” Experimental Cell Research, vol. 21, no. 2, pp. 414–420, 1960. View at Google Scholar · View at Scopus
  60. J. T. Vilquin, J.-P. Marolleau, A. Hagege, P. Menasche, M. Fiszman, and K. Schwartz, “Cell transplantation for post-ischemic heart failure,” Archives des Maladies du Coeur et des Vaisseaux, vol. 95, no. 12, pp. 1219–1225, 2002. View at Google Scholar · View at Scopus
  61. D. Skuk and J. P. Tremblay, “Myoblast transplantation: the current status of a potential therapeutic tool for myopathies,” Journal of Muscle Research and Cell Motility, vol. 24, no. 4–6, pp. 285–300, 2003. View at Google Scholar · View at Scopus
  62. C. L. Pin and P. A. Merrifield, “Developmental potential of rat L6 myoblasts in vivo following injection into regenerating muscles,” Developmental Biology, vol. 188, no. 1, pp. 147–166, 1997. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Cantini, M. L. Massimino, C. Catani, R. Rizzuto, M. Brini, and U. Carraro, “Gene transfer into satellite cell from regenerating muscle: bupivacaine allows β-gal transfection and expression in vitro and in vivo,” In Vitro Cellular and Developmental Biology-Animal, vol. 30, no. 2, pp. 131–133, 1994. View at Google Scholar · View at Scopus
  64. J. N. Kornegay, S. M. Prattis, D. J. Bogan et al., “Results of myoblast transplantation in a canine model of muscle injury,” in Duchenne Muscular Dystrophy: Animal Models and Genetic Manipulation, pp. 203–212, Raven Press, New York, NY, USA, 1992. View at Google Scholar
  65. H. Ito, J. Vilquin, D. Skuk et al., “Myoblast transplantation in non-dystrophic dog,” Neuromuscular Disorders, vol. 8, no. 2, pp. 95–110, 1998. View at Publisher · View at Google Scholar · View at Scopus
  66. D. Skuk, M. Goulet, M. Paradis, and J. P. Tremblay, “Myoblast transplantation: techniques in nonhuman primates as a bridge to clinical trials,” in Methods in BioengIneerIng: Cell Transplantation, pp. 219–236, Artech House, Boston, Mass, USA, 2011. View at Google Scholar
  67. B. Coulet, F. Lacombe, C. Lazerges et al., “Short- or long-term effects of adult myoblast transfer on properties of reinnervated skeletal muscles,” Muscle & Nerve, vol. 33, no. 2, pp. 254–264, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. M. César, S. Roussanne-Domergue, B. Coulet et al., “Transplantation of adult myoblasts or adipose tissue precursor cells by high-density injection failed to improve reinnervated skeletal muscles,” Muscle & Nerve, vol. 37, no. 2, pp. 219–230, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. N. Holzer, S. Hogendoorn, L. Zürcher et al., “Autologous transplantation of porcine myogenic precursor cells in skeletal muscle,” Neuromuscular Disorders, vol. 15, no. 3, pp. 237–244, 2005. View at Publisher · View at Google Scholar · View at Scopus
  70. Z. Qu-Petersen, B. Deasy, R. Jankowski et al., “Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration,” Journal of Cell Biology, vol. 157, no. 5, pp. 851–864, 2002. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Sampaolesi, Y. Torrente, A. Innocenzi et al., “Cell therapy of α-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts,” Science, vol. 301, no. 5632, pp. 487–492, 2003. View at Publisher · View at Google Scholar · View at Scopus
  72. M. Sampaolesi, S. Blot, G. D'Antona et al., “Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs,” Nature, vol. 444, no. 7119, pp. 574–579, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. M. Crisan, S. Yap, L. Casteilla et al., “A perivascular origin for mesenchymal stem cells in multiple human organs,” Cell Stem Cell, vol. 3, no. 3, pp. 301–313, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. B. Zheng, B. Cao, M. Crisan et al., “Prospective identification of myogenic endothelial cells in human skeletal muscle,” Nature Biotechnology, vol. 25, no. 9, pp. 1025–1034, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. R. Benchaouir, M. Meregalli, A. Farini et al., “Restoration of human dystrophin following transplantation of exon-skipping-engineered DMD patient stem cells into dystrophic mice,” Cell Stem Cell, vol. 1, no. 6, pp. 646–657, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. K. J. Mitchell, A. Pannérec, B. Cadot et al., “Identification and characterization of a non-satellite cell muscle resident progenitor during postnatal development,” Nature Cell Biology, vol. 12, no. 3, pp. 257–266, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. K. Liadaki, J. C. Casar, M. Wessen et al., “Beta4 integrin marks interstitial myogenic progenitor cells in adult murine skeletal muscle,” Journal of Histochemistry and Cytochemistry, vol. 60, no. 1, pp. 31–44, 2012. View at Publisher · View at Google Scholar · View at Scopus
  78. A. Pannerec, G. Marazzi, and D. Sassoon, “Stem cells in the hood: the skeletal muscle niche,” Trends in Molecular Medicine, vol. 18, no. 10, pp. 599–606, 2012. View at Publisher · View at Google Scholar
  79. M. D. Grounds, “Skeletal muscle precursors do not arise from bone marrow cells,” Cell and Tissue Research, vol. 234, no. 3, pp. 713–722, 1983. View at Google Scholar · View at Scopus
  80. E. Schultz, D. L. Jaryszak, M. C. Gibson, and D. J. Albright, “Absence of exogenous satellite cell contribution to regeneration of frozen skeletal muscle,” Journal of Muscle Research and Cell Motility, vol. 7, no. 4, pp. 361–367, 1986. View at Publisher · View at Google Scholar · View at Scopus
  81. S. Wakeford, D. J. Watt, and T. A. Partridge, “X-irradiation improves mdx mouse muscle as a model of myofiber loss in DMD,” Muscle & Nerve, vol. 14, no. 1, pp. 42–50, 1990. View at Publisher · View at Google Scholar · View at Scopus
  82. B. Weller, G. Karpati, S. Lehnert, S. Carpenter, B. Ajdukovic, and P. Holland, “Inhibition of myosatellite cell proliferation by gamma irradiation does not prevent the age-related increase of the number of dystrophin-positive fibers in soleus muscles of mdx female heterozygote mice,” American Journal of Pathology, vol. 138, no. 6, pp. 1497–1502, 1991. View at Google Scholar · View at Scopus
  83. J. D. Rosenblatt and D. J. Parry, “Gamma irradiation prevents compensatory hypertrophy of overloaded mouse extensor digitorum longus muscle,” Journal of Applied Physiology, vol. 73, no. 6, pp. 2538–2543, 1992. View at Google Scholar · View at Scopus
  84. T. A. Robertson, M. D. Grounds, and J. M. Papadimitriou, “Elucidation of aspects of murine skeletal muscle regeneration using local and whole body irradiation,” Journal of Anatomy, vol. 181, no. 2, pp. 265–276, 1992. View at Google Scholar · View at Scopus
  85. G. Ferrari, G. Cusella-De Angelis, M. Coletta et al., “Muscle regeneration by bone marrow-derived myogenic progenitors,” Science, vol. 279, no. 5356, pp. 1528–1530, 1998. View at Publisher · View at Google Scholar · View at Scopus
  86. E. Gussoni, Y. Soneoka, C. D. Strickland et al., “Dystrophin expression in the mdx mouse restored by stem cell transplantation,” Nature, vol. 401, no. 6751, pp. 390–394, 1999. View at Publisher · View at Google Scholar · View at Scopus
  87. G. Ferrari, A. Stornaiuolo, and F. Mavilio, “Failure to correct murine muscular dystrophy,” Nature, vol. 411, no. 6841, pp. 1014–1015, 2001. View at Publisher · View at Google Scholar · View at Scopus
  88. S. Corti, S. Strazzer, R. Del Bo et al., “A subpopulation of murine bone marrow cells fully differentiates along the myogenic pathway and participates in muscle repair in the mdx dystrophic mouse,” Experimental Cell Research, vol. 277, no. 1, pp. 74–85, 2002. View at Publisher · View at Google Scholar · View at Scopus
  89. C. Dell'Agnola, Z. Wang, R. Storb et al., “Hematopoietic stem cell transplantation does not restore dystrophin expression in Duchenne muscular dystrophy dogs,” Blood, vol. 104, no. 13, pp. 4311–4318, 2004. View at Publisher · View at Google Scholar · View at Scopus
  90. E. Gussoni, R. R. Bennett, K. R. Muskiewicz et al., “Long-term persistence of donor nuclei in a Duchenne muscular dystrophy patient receiving bone marrow transplantation,” Journal of Clinical Investigation, vol. 110, no. 6, pp. 807–814, 2002. View at Publisher · View at Google Scholar · View at Scopus
  91. P. B. Kang, H. G. W. Lidov, A. J. White et al., “Inefficient dystrophin expression after cord blood transplantation in duchenne muscular dystrophy,” Muscle & Nerve, vol. 41, no. 6, pp. 746–750, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. F. D. Camargo, R. Green, Y. Capetenaki, K. A. Jackson, and M. A. Goodell, “Single hematopoietic stem cells generate skeletal muscle through myeloid intermediates,” Nature Medicine, vol. 9, no. 12, pp. 1520–1527, 2003. View at Publisher · View at Google Scholar · View at Scopus
  93. G. Wernig, V. Janzen, R. Schäfer et al., “The vast majority of bone-marrow-derived cells integrated into mdx muscle fibers are silent despite long-term engraftment,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 33, pp. 11852–11857, 2005. View at Publisher · View at Google Scholar · View at Scopus
  94. L. De Angelis, L. Berghella, M. Coletta et al., “Skeletal myogenic progenitors originating from embryonic dorsal aorta coexpress endothelial and myogenic markers and contribute to postnatal muscle growth and regeneration,” Journal of Cell Biology, vol. 147, no. 4, pp. 869–877, 1999. View at Publisher · View at Google Scholar · View at Scopus
  95. R. Tonlorenzi, A. Dellavalle, E. Schnapp, G. Cossu, and M. Sampaolesi, “Isolation and characterization of mesoangioblasts from mouse, dog, and human tissues,” Current protocols in stem cell biology, vol. 2, Article ID 2B1, 2007. View at Google Scholar · View at Scopus
  96. K. E. Davies and M. D. Grounds, “Treating muscular dystrophy with stem cells?” Cell, vol. 127, no. 7, pp. 1304–1306, 2006. View at Publisher · View at Google Scholar · View at Scopus
  97. M. D. Grounds and K. E. Davies, “The allure of stem cell therapy for muscular dystrophy,” Neuromuscular Disorders, vol. 17, no. 3, pp. 206–208, 2007. View at Publisher · View at Google Scholar · View at Scopus
  98. A. H. Bretag, “Stem cell treatment of dystrophic dogs,” Nature, vol. 450, no. 7173, pp. E23–E25, 2007. View at Publisher · View at Google Scholar · View at Scopus
  99. F. S. Tedesco, A. Dellavalle, J. Diaz-Manera, G. Messina, and G. Cossu, “Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells,” Journal of Clinical Investigation, vol. 120, no. 1, pp. 11–19, 2010. View at Publisher · View at Google Scholar · View at Scopus
  100. K. K. Hirschi and P. A. D'Amore, “Pericytes in the microvasculature,” Cardiovascular Research, vol. 32, no. 4, pp. 687–698, 1996. View at Publisher · View at Google Scholar · View at Scopus
  101. M. J. Doherty, B. A. Ashton, S. Walsh, J. N. Beresford, M. E. Grant, and A. E. Canfield, “Vascular pericytes express osteogenic potential in vitro and in vivo,” Journal of Bone and Mineral Research, vol. 13, no. 5, pp. 828–838, 1998. View at Publisher · View at Google Scholar · View at Scopus
  102. C. Farrington-Rock, N. J. Crofts, M. J. Doherty, B. A. Ashton, C. Griffin-Jones, and A. E. Canfield, “Chondrogenic and adipogenic potential of microvascular pericytes,” Circulation, vol. 110, no. 15, pp. 2226–2232, 2004. View at Publisher · View at Google Scholar · View at Scopus
  103. I. Kirillova, E. Gussoni, D. J. Goldhamer, and Z. Yablonka-Reuveni, “Myogenic reprogramming of retina-derived cells following their spontaneous fusion with myotubes,” Developmental Biology, vol. 311, no. 2, pp. 449–463, 2007. View at Publisher · View at Google Scholar · View at Scopus
  104. A. Dellavalle, G. Maroli, D. Covarello et al., “Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells,” Nature Communications, vol. 2, no. 1, p. 499, 2011. View at Publisher · View at Google Scholar · View at Scopus
  105. A. B. Borisov, “Regeneration of skeletal and cardiac muscle in mammals: do nonprimate models resemble human pathology?” Wound Repair and Regeneration, vol. 7, no. 1, pp. 26–35, 1999. View at Publisher · View at Google Scholar · View at Scopus
  106. H. Puchtler, F. Sweat, M. S. Terry, and H. M. Conner, “Investigation of staining, polarization and fluorescence-microscopic properties of myoendothelial cells,” Journal of Microscopy, vol. 89, no. 1, pp. 95–104, 1969. View at Google Scholar · View at Scopus
  107. A. H. Yin, S. Miraglia, E. D. Zanjani et al., “AC133, a novel marker for human hematopoietic stem and progenitor cells,” Blood, vol. 90, no. 12, pp. 5002–5012, 1997. View at Google Scholar · View at Scopus
  108. Y. Torrente, M. Belicchi, M. Sampaolesi et al., “Human circulating AC133+ stem cells restore dystrophin expression and ameliorate function in dystrophic skeletal muscle,” Journal of Clinical Investigation, vol. 114, no. 2, pp. 182–195, 2004. View at Publisher · View at Google Scholar · View at Scopus
  109. Y. Torrente, M. Belicchi, C. Marchesi et al., “Autologous transplantation of muscle-derived CD133+ stem cells in Duchenne muscle patients,” Cell Transplantation, vol. 16, no. 6, pp. 563–577, 2007. View at Google Scholar · View at Scopus
  110. Z. Qu, L. Balkir, J. C. T. Van Deutekom, P. D. Robbins, R. Pruchnic, and J. Huard, “Development of approaches to improve cell survival in myoblast transfer therapy,” Journal of Cell Biology, vol. 142, no. 5, pp. 1257–1267, 1998. View at Publisher · View at Google Scholar · View at Scopus
  111. G. M. Mueller, T. O'Day, J. F. Watchko, and M. Ontell, “Effect of injecting primary myoblasts versus putative muscle-derived stem cells on mass and force generation in mdx mice,” Human Gene Therapy, vol. 13, no. 9, pp. 1081–1090, 2002. View at Publisher · View at Google Scholar · View at Scopus
  112. A. Asakura, P. Seale, A. Girgis-Gabardo, and M. A. Rudnicki, “Myogenic specification of side population cells in skeletal muscle,” Journal of Cell Biology, vol. 159, no. 1, pp. 123–134, 2002. View at Publisher · View at Google Scholar · View at Scopus
  113. R. Sarig, Z. Baruchi, O. Fuchs, U. Nudel, and D. Yaffe, “Regeneration and transdifferentiation potential of muscle-derived stem cells propagated as myospheres,” Stem Cells, vol. 24, no. 7, pp. 1769–1778, 2006. View at Publisher · View at Google Scholar · View at Scopus
  114. D. N. Landon, “Skeletal muscle: normal morphology, development and innervation,” in Skeletal Muscle Pathology, pp. 1–87, Churchil Livingstone, Edinburgh, UK, 1982. View at Google Scholar
  115. D. Skuk and J. P. Tremblay, “Intramuscular cell transplantation as a potential treatment of myopathies: clinical and preclinical relevant data,” Expert Opinion on Biological Therapy, vol. 11, no. 3, pp. 359–374, 2011. View at Publisher · View at Google Scholar · View at Scopus
  116. A. M. Neumeyer, D. M. DiGregorio, and R. H. Brown Jr., “Arterial delivery of myoblasts to skeletal muscle,” Neurology, vol. 42, no. 12, pp. 2258–2262, 1992. View at Google Scholar · View at Scopus
  117. T. A. Partridge, “Invited review: myoblast transfer: a possible therapy for inherited myopathies?” Muscle & Nerve, vol. 14, no. 3, pp. 197–212, 1991. View at Google Scholar · View at Scopus
  118. E. Bachrach, A. L. Perez, Y. Choi et al., “Muscle engraftment of myogenic progenitor cells following intraarterial transplantation,” Muscle & Nerve, vol. 34, no. 1, pp. 44–52, 2006. View at Publisher · View at Google Scholar · View at Scopus
  119. Y. Torrente, J.-P. Tremblay, F. Pisati et al., “Intraarterial injection of muscle-derived CD34+Sca-1+ stem cells restores dystrophin in mdx mice,” Journal of Cell Biology, vol. 152, no. 2, pp. 335–348, 2001. View at Publisher · View at Google Scholar · View at Scopus
  120. D. Skuk, M. Goulet, and J. P. Tremblay, “Use of repeating dispensers to increase the efficiency of the intramuscular myogenic cell injection procedure,” Cell Transplantation, vol. 15, no. 7, pp. 659–663, 2006. View at Publisher · View at Google Scholar · View at Scopus
  121. D. Skuk, M. Goulet, B. Roy, and J. P. Tremblay, “Myoblast transplantation in whole muscle of nonhuman primates,” Journal of Neuropathology and Experimental Neurology, vol. 59, no. 3, pp. 197–206, 2000. View at Google Scholar · View at Scopus
  122. D. Skuk, M. Goulet, B. Roy, and J. P. Tremblay, “Efficacy of myoblast transplantation in nonhuman primates following simple intramuscular cell injections: toward defining strategies applicable to humans,” Experimental Neurology, vol. 175, no. 1, pp. 112–126, 2002. View at Publisher · View at Google Scholar · View at Scopus
  123. D. Skuk, M. Goulet, and J. P. Tremblay, “Use of repeating dispensers to increase the efficiency of the intramuscular myogenic cell injection procedure,” Cell Transplantation, vol. 15, no. 7, pp. 659–663, 2006. View at Publisher · View at Google Scholar · View at Scopus
  124. D. Skuk, “Myoblast transplantion for inherited myopathies: a clinical approach,” Expert Opinion on Biological Therapy, vol. 4, no. 12, pp. 1871–1885, 2004. View at Publisher · View at Google Scholar · View at Scopus
  125. D. Skuk, M. Goulet, and J. P. Tremblay, “Transplanted myoblasts can migrate several millimeters to fuse with damaged myofibers in nonhuman primate skeletal muscle,” Journal of Neuropathology and Experimental Neurology, vol. 70, no. 9, pp. 770–778, 2011. View at Publisher · View at Google Scholar · View at Scopus
  126. D. Skuk, M. Goulet, and J. P. Tremblay, “Electroporation as method to induce myofiber regeneration and increase the engraftment of myogenic cells in skeletal muscles of primates,” Jornal of Neuropathololgy and Experimenbtal Neurology, vol. 72, no. 8, pp. 723–734, 2013. View at Publisher · View at Google Scholar
  127. P. D. Moens, M. C. Van-Schoor, and G. Maréchal, “Lack of myoblasts migration between transplanted and host muscles of mdx and normal mice,” Journal of Muscle Research and Cell Motility, vol. 17, no. 1, pp. 37–43, 1996. View at Publisher · View at Google Scholar · View at Scopus
  128. T. A. Robertson, M. A. L. Maley, M. D. Grounds, and J. M. Papadimitriou, “The role of macrophages in skeletal muscle regeneration with particular reference to chemotaxis,” Experimental Cell Research, vol. 207, no. 2, pp. 321–331, 1993. View at Publisher · View at Google Scholar · View at Scopus
  129. R. Bischoff, “Chemotaxis of skeletal muscle satellite cells,” Developmental Dynamics, vol. 208, no. 4, pp. 505–515, 1997. View at Google Scholar
  130. Y. Tokura, Y. Nakayama, S. Fukada et al., “Muscle injury-induced thymosin β4 acts as a chemoattractant for myoblasts,” Journal of Biochemistry, vol. 149, no. 1, pp. 43–48, 2011. View at Publisher · View at Google Scholar · View at Scopus
  131. A. L. Siegel, K. Atchison, K. E. Fisher, G. E. Davis, and D. D. W. Cornelison, “3D timelapse analysis of muscle satellite cell motility,” Stem Cells, vol. 27, no. 10, pp. 2527–2538, 2009. View at Publisher · View at Google Scholar · View at Scopus
  132. S. P. Quenneville, P. Chapdelaine, D. Skuk et al., “Autologous transplantation of muscle precursor cells modified with a lentivirus for muscular dystrophy: human cells and primate models,” Molecular Therapy, vol. 15, no. 2, pp. 431–438, 2007. View at Publisher · View at Google Scholar · View at Scopus
  133. E. El Fahime, P. Mills, J. F. Lafreniere, Y. Torrente, and J. P. Tremblay, “The urokinase plasminogen activator: an interesting way to improve myoblast migration following their transplantation,” Experimental Cell Research, vol. 280, no. 2, pp. 169–178, 2002. View at Publisher · View at Google Scholar · View at Scopus
  134. J. F. Lafreniere, P. Mills, M. Bouchentouf, and J. P. Tremblay, “Interleukin-4 improves the migration of human myogenic precursor cells in vitro and in vivo,” Experimental Cell Research, vol. 312, no. 7, pp. 1127–1141, 2006. View at Publisher · View at Google Scholar · View at Scopus
  135. P. Mills, J. C. Dominique, J. F. Lafrenière, M. Bouchentouf, and J. P. Tremblay, “A synthetic mechano growth factor E peptide enhances myogenic precursor cell transplantation success,” American Journal of Transplantation, vol. 7, no. 10, pp. 2247–2259, 2007. View at Publisher · View at Google Scholar · View at Scopus
  136. P. Mills, J. Lafrenière, B. F. Benabdallah, E. M. El Fahime, and J. Tremblay, “A new pro-migratory activity on human myogenic precursor cells for a synthetic peptide within the E domain of the mechano growth factor,” Experimental Cell Research, vol. 313, no. 3, pp. 527–537, 2007. View at Publisher · View at Google Scholar · View at Scopus
  137. J. F. Lafreniere, M. C. Caron, D. Skuk, M. Goulet, A. R. Cheikh, and J. P. Tremblay, “Growth factor coinjection improves the migration potential of monkey myogenic precursors without affecting cell transplantation success,” Cell Transplantation, vol. 18, no. 7, pp. 719–730, 2009. View at Publisher · View at Google Scholar · View at Scopus
  138. C. Pichavant, C. Gargioli, and J. P. Tremblay, “Intramuscular transplantation of muscle precursor cells over-expressing MMP-9 improves transplantation success,” PLOS Currents, vol. 3, Article ID RRN1275, 2011. View at Publisher · View at Google Scholar
  139. J. T. Vilquin, I. Asselin, B. Guerette, I. Kinoshita, R. Roy, and J. P. Tremblay, “Successful myoblast allotransplantation in mdx mice using rapamycin,” Transplantation, vol. 59, no. 3, pp. 422–426, 1995. View at Google Scholar · View at Scopus
  140. C. Lazerges, P. Daussin, B. Coulet et al., “Transplantation of primary satellite cells improves properties of reinnervated skeletal muscles,” Muscle & Nerve, vol. 29, no. 2, pp. 218–226, 2004. View at Publisher · View at Google Scholar · View at Scopus
  141. M. Bouchentouf, B. F. Benabdallah, P. Bigey, T. M. Yau, D. Scherman, and J. P. Tremblay, “Vascular endothelial growth factor reduced hypoxia-induced death of human myoblasts and improved their engraftment in mouse muscles,” Gene Therapy, vol. 15, no. 6, pp. 404–414, 2008. View at Publisher · View at Google Scholar · View at Scopus
  142. J. G. Gross, G. Bou-Gharios, and J. E. Morgan, “Potentiation of myoblast transplantation by host muscle irradiation is dependent on the rate of radiation delivery,” Cell and Tissue Research, vol. 298, no. 2, pp. 371–375, 1999. View at Publisher · View at Google Scholar · View at Scopus
  143. D. Skuk, B. Roy, M. Goulet, and J. P. Tremblay, “Successful myoblast transplantation in primates depends on appropriate cell delivery and induction of regeneration in the host muscle,” Experimental Neurology, vol. 155, no. 1, pp. 22–30, 1999. View at Publisher · View at Google Scholar · View at Scopus
  144. B. M. Carlson, “Muscle regeneration in animal models,” in Skeletal Muscle Repair and Regeneration, pp. 163–179, Springer, Dordrecht, The Netherlands, 2008. View at Google Scholar
  145. I. Kinoshita, J. T. Vilquin, I. Asselin, J. Chamberlain, and J. P. Tremblay, “Transplantation of myoblasts from a transgenic mouse overexpressing dystrophin produced only a relatively small increase of dystrophin- positive membrane,” Muscle & Nerve, vol. 21, no. 1, pp. 91–103, 1998. View at Google Scholar
  146. P. L. Richard, C. Gosselin, T. Laliberté et al., “A first semimanual device for clinical intramuscular repetitive cell injections,” Cell Transplantation, vol. 19, no. 1, pp. 67–78, 2010. View at Publisher · View at Google Scholar · View at Scopus
  147. J. R. Beauchamp, J. E. Morgan, C. N. Pagel, and T. A. Partridge, “Quantitative studies of efficacy of myoblast transplantation,” Muscle & Nerve, supplement 4, p. S261, 1994. View at Google Scholar
  148. J. Huard, G. Acsadi, A. Jani, B. Massie, and G. Karpati, “Gene transfer into skeletal muscles by isogenic myoblasts,” Human Gene Therapy, vol. 5, no. 8, pp. 949–958, 1994. View at Google Scholar · View at Scopus
  149. B. Guérette, D. Skuk, F. Célestin et al., “Prevention by anti-LFA-1 of acute myoblast death following transplantation,” Journal of Immunology, vol. 159, no. 5, pp. 2522–2531, 1997. View at Google Scholar · View at Scopus
  150. J. R. Beauchamp, J. E. Morgan, C. N. Pagel, and T. A. Partridge, “Dynamics of myoblast transplantation reveal a discrete minority of precursors with stem cell-like properties as the myogenic source,” Journal of Cell Biology, vol. 144, no. 6, pp. 1113–1121, 1999. View at Publisher · View at Google Scholar · View at Scopus
  151. D. Skuk, N. J. Caron, M. Goulet, B. Roy, and J. P. Tremblay, “Resetting the problem of cell death following muscle-derived cell transplantation: detection, dynamics and mechanisms,” Journal of Neuropathology and Experimental Neurology, vol. 62, no. 9, pp. 951–967, 2003. View at Google Scholar · View at Scopus
  152. I. Riederer, E. Negroni, A. Bigot et al., “Heat shock treatment increases engraftment of transplanted human myoblasts into immunodeficient mice,” Transplantation Proceedings, vol. 40, no. 2, pp. 624–630, 2008. View at Publisher · View at Google Scholar · View at Scopus
  153. J. C. Cousins, K. J. Woodward, J. G. Gross, T. A. Partridge, and J. E. Morgan, “Regeneration of skeletal muscle from transplanted immortalised myoblasts is oligoclonal,” Journal of Cell Science, vol. 117, no. 15, pp. 3259–3269, 2004. View at Publisher · View at Google Scholar · View at Scopus
  154. S. I. Hodgetts, M. W. Beilharz, A. A. Scalzo, and M. D. Grounds, “Why do cultured transplanted myoblasts die in vivo? DNA quantification shows enhanced survival of donor male myoblasts in host mice depleted of CD4+ and CD8+ cells or NK1.1+ cells,” Cell Transplantation, vol. 9, no. 4, pp. 489–502, 2000. View at Google Scholar · View at Scopus
  155. S. I. Hodgetts and M. D. Grounds, “Complement and myoblast transfer therapy: donor myoblast survival is enhanced following depletion of host complement C3 using cobra venom factor, but not in the absence of C5,” Immunology and Cell Biology, vol. 79, no. 3, pp. 231–239, 2001. View at Publisher · View at Google Scholar · View at Scopus
  156. L. M. Sammels, E. Bosio, C. T. Fragall, M. D. Grounds, N. Van Rooijen, and M. W. Beilharz, “Innate inflammatory cells are not responsible for early death of donor myoblasts after myoblast transfer therapy,” Transplantation, vol. 77, no. 12, pp. 1790–1797, 2004. View at Publisher · View at Google Scholar · View at Scopus
  157. B. Guérette, I. Asselin, D. Skuk, M. Entman, and J. P. Tremblay, “Control of inflammatory damage by anti-LFA-1: increase success of myoblast transplantation,” Cell Transplantation, vol. 6, no. 2, pp. 101–107, 1997. View at Publisher · View at Google Scholar · View at Scopus
  158. P. F. Lesault, M. Theret, M. Magnan et al., “Macrophages improve survival, proliferation and migration of engrafted myogenic precursor cells into MDX skeletal muscle,” PLoS One, vol. 7, no. 10, Article ID e46698, 2012. View at Publisher · View at Google Scholar
  159. D. Skuk, N. Caron, M. Goulet, B. Roy, F. Espinosa, and J. P. Tremblay, “Dynamics of the early immune cellular reactions after myogenic cell transplantation,” Cell Transplantation, vol. 11, no. 7, pp. 671–681, 2002. View at Google Scholar · View at Scopus
  160. M. Bouchentouf, B. F. Benabdallah, J. Rousseau, L. M. Schwartz, and J. P. Tremblay, “Induction of anoikis following myoblast transplantation into SCID mouse muscles requires the Bit1 and FADD pathways,” American Journal of Transplantation, vol. 7, no. 6, pp. 1491–1505, 2007. View at Publisher · View at Google Scholar · View at Scopus
  161. M. Bouchentouf, B. F. Benabdallah, and J. P. Tremblay, “Myoblast survival enhancement and transplantation success improvement by heat-shock treatment in MDX mice,” Transplantation, vol. 77, no. 9, pp. 1349–1356, 2004. View at Publisher · View at Google Scholar · View at Scopus
  162. R. Fakhfakh, Y. Lamarre, D. Skuk, and J. P. Tremblay, “Losartan enhances the success of myoblast transplantation,” Cell Transplantation, vol. 21, no. 1, pp. 139–152, 2012. View at Publisher · View at Google Scholar · View at Scopus
  163. C. Gerard, C. Dufour, S. Goudenege, D. Skuk, and J. P. Tremblay, “AG490 improves the survival of human myoblasts in vitro and in vivo,” Cell Transplantation, vol. 21, no. 12, pp. 2665–2676, 2012. View at Publisher · View at Google Scholar
  164. C. Gerard, M. A. Forest, G. Beauregard, D. Skuk, and J. P. Tremblay, “Fibrin gel improves the survival of transplanted myoblasts,” Cell Transplantation, vol. 21, no. 1, pp. 127–137, 2012. View at Publisher · View at Google Scholar · View at Scopus
  165. D. Skuk, M. Paradis, M. Goulet, and J. P. Tremblay, “Ischemic central necrosis in pockets of transplanted myoblasts in nonhuman primates: implications for cell-transplantation strategies,” Transplantation, vol. 84, no. 10, pp. 1307–1315, 2007. View at Publisher · View at Google Scholar · View at Scopus
  166. B. A. J. Ponder, M. M. Wilkinson, M. Wood, and J. H. Westwood, “Immunohistochemical demonstration of H2 antigens in mouse tissue sections,” Journal of Histochemistry and Cytochemistry, vol. 31, no. 7, pp. 911–919, 1983. View at Google Scholar · View at Scopus
  167. S. T. Appleyard, M. J. Dunn, V. Dubowitz, and M. L. Rose, “Increased expression of HLA ABC class I antigens by muscle fibres in Duchenne muscular dystrophy, inflammatory myopathy, and other neuromuscular disorders,” The Lancet, vol. 1, no. 8425, pp. 361–363, 1985. View at Google Scholar · View at Scopus
  168. G. Karpati, Y. Pouliot, and S. Carpenter, “Expression of immunoreactive major histocompatibility complex products in human skeletal muscles,” Annals of Neurology, vol. 23, no. 1, pp. 64–72, 1988. View at Google Scholar · View at Scopus
  169. A. M. Emslie-Smith, K. Arahata, and A. G. Engel, “Major histocompatibility complex class I antigen expression, immunolocalization of interferon subtypes, and T cell-mediated cytotoxicity in myopathies,” Human Pathology, vol. 20, no. 3, pp. 224–231, 1989. View at Google Scholar · View at Scopus
  170. R. Mantegazza, S. M. Hughes, D. Mitchell, M. Travis, H. M. Blau, and L. Steinman, “Modulation of MHC class II antigen expression in human myoblasts after treatment with IFN-γ,” Neurology, vol. 41, no. 7, pp. 1128–1132, 1991. View at Google Scholar · View at Scopus
  171. C. Cifuentes-Diaz, C. Delaporte, B. Dautreaux, D. Charron, and M. Fardeau, “Class II MHC antigens in normal human skeletal muscle,” Muscle & Nerve, vol. 15, no. 3, pp. 295–302, 1992. View at Google Scholar · View at Scopus
  172. D. Michaelis, N. Goebels, and R. Hohlfeld, “Constitutive and cytokine-induced expression of human leukocyte antigens and cell adhesion molecules by human myotubes,” American Journal of Pathology, vol. 143, no. 4, pp. 1142–1149, 1993. View at Google Scholar · View at Scopus
  173. P. H. Jones, “Implantation of cultured regenerate muscle cells into adult rat muscle,” Experimental Neurology, vol. 66, no. 3, pp. 602–610, 1979. View at Google Scholar · View at Scopus
  174. B. Guerette, I. Asselin, J. T. Vilquin, R. Roy, and J. P. Tremblay, “Lymphocyte infiltration following allo- and xenomyoblast transplantation in mdx mice,” Muscle & Nerve, vol. 18, no. 1, pp. 39–51, 1995. View at Publisher · View at Google Scholar · View at Scopus
  175. A. Irintchev, M. Zweyer, and A. Wernig, “Cellular and molecular reactions in mouse muscles after myoblast implantation,” Journal of Neurocytology, vol. 24, no. 4, pp. 319–331, 1995. View at Google Scholar · View at Scopus
  176. A. Wernig and A. Irintchev, “'Bystander' damage of host muscle caused by implantation of MHC-compatible myogenic cells,” Journal of the Neurological Sciences, vol. 130, no. 2, pp. 190–196, 1995. View at Publisher · View at Google Scholar · View at Scopus
  177. B. Guerette, R. Roy, M. Tremblay et al., “Increased granzyme B mRNA after alloincompatible myoblast transplantation,” Transplantation, vol. 60, no. 9, pp. 1011–1016, 1995. View at Google Scholar · View at Scopus
  178. B. Guerette, G. Tremblay, J. T. Vilquin et al., “Increased interferon-gamma mRNA expression following alloincompatible myoblast transplantation is inhibited by FK506,” Muscle & Nerve, vol. 19, no. 7, pp. 829–835, 1996. View at Google Scholar
  179. A. Boulanger, I. Asselin, R. Roy, and J. P. Tremblay, “Role of non-major histocompatibility complex antigens in the rejection of transplanted myoblasts,” Transplantation, vol. 63, no. 6, pp. 893–899, 1997. View at Publisher · View at Google Scholar · View at Scopus
  180. D. Skuk, “Acute rejection of myofibers in nonhuman primates: key histopathologic features,” Journal of Neuropathology and Experimental Neurology, vol. 71, no. 5, pp. 398–412, 2012. View at Publisher · View at Google Scholar · View at Scopus
  181. D. Skuk and J. P. Tremblay, “Necrosis, sarcolemmal damage and apoptotic events in myofibers rejected by CD8+ lymphocytes: observations in nonhuman primates,” Neuromuscular Disorders, vol. 22, no. 11, pp. 997–1005, 2012. View at Publisher · View at Google Scholar
  182. J. T. Vilquin, I. Kinoshita, R. Roy, and J. P. Tremblay, “Cyclophosphamide immunosuppression does not permit successful myoblast allotransplantation in mouse,” Neuromuscular Disorders, vol. 5, no. 6, pp. 511–517, 1995. View at Publisher · View at Google Scholar · View at Scopus
  183. G. K. Pavlath, T. A. Rando, and H. M. Blau, “Transient immunosuppressive treatment leads to long-term retention of allogeneic myoblasts in hybrid myofibers,” Journal of Cell Biology, vol. 127, no. 6, pp. 1923–1932, 1994. View at Publisher · View at Google Scholar · View at Scopus
  184. I. Asselin, M. Tremblay, J.-T. Vilquin, B. Guerette, R. Roy, and J. P. Tremblay, “Quantification of normal dystrophin mRNA following myoblast transplantation in mdx mice,” Muscle & Nerve, vol. 18, no. 9, pp. 980–986, 1995. View at Publisher · View at Google Scholar · View at Scopus
  185. O. Hardiman, R. M. Sklar, and R. H. Brown Jr., “Direct effects of cyclosporin A and cyclophosphamide on differentiation of normal human myoblasts in culture,” Neurology, vol. 43, no. 7, pp. 1432–1434, 1993. View at Google Scholar · View at Scopus
  186. F. Hong, J. Lee, J. Song et al., “Cyclosporin A blocks muscle differentiation by inducing oxidative stress and inhibiting the peptidyl-prolyl-cis-trans isomerase activity of cyclophilin A: cyclophilin A protects myoblasts from cyclosporin A-induced cytotoxicity,” The FASEB Journal, vol. 16, no. 12, pp. 1633–1635, 2002. View at Google Scholar · View at Scopus
  187. G. Camirand, N. J. Caron, I. Asselin, and J. P. Tremblay, “Combined immunosuppression of mycophenolate mofetil and FK506 for myoblast transplantation in mdx mice,” Transplantation, vol. 72, no. 1, pp. 38–44, 2001. View at Publisher · View at Google Scholar · View at Scopus
  188. J.-T. Vilquin, I. Asselin, B. Guerette et al., “Myoblast allotransplantation in mice: degree of success varies depending on the efficacy of various immunosuppressive treatments,” Transplantation Proceedings, vol. 26, no. 6, pp. 3372–3373, 1994. View at Google Scholar · View at Scopus
  189. B. Guérette, M. Gingras, K. Wood, R. Roy, and J. P. Tremblay, “Immunosuppression with monoclonal antibodies and CTLA4-Ig after myoblast transplantation in mice,” Transplantation, vol. 62, no. 7, pp. 962–967, 1996. View at Publisher · View at Google Scholar · View at Scopus
  190. I. Kinoshita, J. T. Vilquin, C. Gravel, R. Roy, and J. P. Tremblay, “Myoblast allotransplantation in primates,” Muscle & Nerve, vol. 18, no. 10, pp. 1217–1218, 1995. View at Google Scholar · View at Scopus
  191. I. Kinoshita, R. Roy, F. J. Dugré et al., “Myoblast transplantation in monkeys: control of immune response by FK506,” Journal of Neuropathology and Experimental Neurology, vol. 55, no. 6, pp. 687–697, 1996. View at Google Scholar · View at Scopus
  192. C. Semsarian, M. Wu, Y. Ju et al., “Skeletal muscle hypertrophy is mediated by a Ca2+-dependent calcineurin signalling pathway,” Nature, vol. 400, no. 6744, pp. 576–581, 1999. View at Publisher · View at Google Scholar · View at Scopus
  193. D. Chandrasekharan, F. Issa, and K. J. Wood, “Achieving operational tolerance in transplantation: how can lessons from the clinic inform research directions?” Transplant International, vol. 26, no. 6, pp. 576–589, 2013. View at Publisher · View at Google Scholar
  194. G. Camirand, J. Rousseau, M. Ducharme, D. M. Rothstein, and J. P. Tremblay, “Novel Duchenne muscular dystrophy treatment through myoblast transplantation tolerance with anti-CD45RB, anti-CD154 and mixed chimerism,” American Journal of Transplantation, vol. 4, no. 8, pp. 1255–1265, 2004. View at Publisher · View at Google Scholar · View at Scopus
  195. L. Stephan, C. Pichavant, M. Bouchentouf et al., “Induction of tolerance across fully mismatched barriers by a nonmyeloablative treatment excluding antibodies or irradiation use,” Cell Transplantation, vol. 15, no. 8-9, pp. 835–846, 2006. View at Google Scholar · View at Scopus
  196. G. Camirand, N. J. Caron, N. A. Turgeon, A. A. Rossini, and J. P. Tremblay, “Treatment with anti-CD154 antibody and donor specific transfusion prevents acute rejection of myoblast transplantation,” Transplantation, vol. 73, no. 3, pp. 453–461, 2002. View at Google Scholar · View at Scopus
  197. G. Camirand, L. Stéphan, J. Rousseau et al., “Central tolerance to myogenic cell transplants does not include muscle neoantigens,” Transplantation, vol. 85, no. 12, pp. 1791–1801, 2008. View at Publisher · View at Google Scholar · View at Scopus
  198. S. P. Quenneville and J. P. Tremblay, “Ex vivo modification of cells to induce a muscle-based expression,” Current Gene Therapy, vol. 6, no. 6, pp. 625–632, 2006. View at Publisher · View at Google Scholar · View at Scopus
  199. Y. Ohtsuka, K. Udaka, Y. Yamashiro, H. Yagita, and K. Okumura, “Dystrophin acts as a transplantation rejection antigen in dystrophin- deficient mice: implication for gene therapy,” Journal of Immunology, vol. 160, no. 9, pp. 4635–4640, 1998. View at Google Scholar · View at Scopus
  200. S. S. Floyd Jr., P. R. Clemens, M. R. Ontell et al., “Ex vivo gene transfer using adenovirus-mediated full-length dystrophin delivery to dystrophic muscles,” Gene Therapy, vol. 5, no. 1, pp. 19–30, 1998. View at Google Scholar · View at Scopus
  201. P.-A. Moisset, Y. Gagnon, G. Karpati, and J. P. Tremblay, “Expression of human dystrophin following the transplantation of genetically modified mdx myoblasts,” Gene Therapy, vol. 5, no. 10, pp. 1340–1346, 1998. View at Google Scholar · View at Scopus
  202. P. Moisset, D. Skuk, I. Asselin et al., “Successful transplantation of genetically corrected DMD myoblasts following ex vivo transduction with the dystrophin minigene,” Biochemical and Biophysical Research Communications, vol. 247, no. 1, pp. 94–99, 1998. View at Publisher · View at Google Scholar · View at Scopus
  203. D. Escors and K. Breckpot, “Lentiviral vectors in gene therapy: their current status and future potential,” Archivum Immunologiae et Therapiae Experimentalis, vol. 58, no. 2, pp. 107–119, 2010. View at Publisher · View at Google Scholar · View at Scopus
  204. C. Pichavant and J. P. Tremblay, “Generation of lentiviral vectors for use in skeletal muscle research,” Methods in Molecular Biology, vol. 798, pp. 285–295, 2012. View at Publisher · View at Google Scholar · View at Scopus
  205. C. E. Thomas, A. Ehrhardt, and M. A. Kay, “Progress and problems with the use of viral vectors for gene therapy,” Nature Reviews Genetics, vol. 4, no. 5, pp. 346–358, 2003. View at Publisher · View at Google Scholar · View at Scopus
  206. M. Bokhoven, S. L. Stephen, S. Knight et al., “Insertional gene activation by lentiviral and gammaretroviral vectors,” Journal of Virology, vol. 83, no. 1, pp. 283–294, 2009. View at Publisher · View at Google Scholar · View at Scopus
  207. Z. Ivics and Z. Izsvák, “Transposons for gene therapy!,” Current Gene Therapy, vol. 6, no. 5, pp. 593–607, 2006. View at Publisher · View at Google Scholar · View at Scopus
  208. H. F. Willard, “Human artificial chromosomes coming into focus,” Nature Biotechnology, vol. 16, no. 5, pp. 415–417, 1998. View at Google Scholar · View at Scopus
  209. H. Hoshiya, Y. Kazuki, S. Abe et al., “A highly stable and nonintegrated human artificial chromosome (HAC) containing the 2.4 Mb entire human dystrophin gene,” Molecular Therapy, vol. 17, no. 2, pp. 309–317, 2009. View at Publisher · View at Google Scholar · View at Scopus
  210. Y. Kazuki, M. Hiratsuka, M. Takiguchi et al., “Complete genetic correction of iPS cells from duchenne muscular dystrophy,” Molecular Therapy, vol. 18, no. 2, pp. 386–393, 2010. View at Publisher · View at Google Scholar · View at Scopus
  211. F. S. Tedesco, H. Hoshiya, G. D'Antona et al., “Stem cell-mediated transfer of a human artificial chromosome ameliorates muscular dystrophy,” Science Translational Medicine, vol. 3, no. 96, Article ID 96ra78, 2011. View at Publisher · View at Google Scholar
  212. C. Webster and H. M. Blau, “Accelerated age-related decline in replicative life-span of Duchenne muscular dystrophy myoblasts: implications for cell and gene therapy,” Somatic Cell and Molecular Genetics, vol. 16, no. 6, pp. 557–565, 1990. View at Publisher · View at Google Scholar · View at Scopus
  213. L. V. Simon, J. R. Beauchamp, M. O'Hare, and I. Olsen, “Establishment of long-term myogenic cultures from patients with Duchenne muscular dystrophy by retroviral transduction of a temperature-sensitive SV40 large T antigen,” Experimental Cell Research, vol. 224, no. 2, pp. 264–271, 1996. View at Publisher · View at Google Scholar · View at Scopus
  214. S. Seigneurin-Venin, V. Bernard, P. Moisset et al., “Transplantation of normal and DMD myoblasts expressing the telomerase gene in SCID mice,” Biochemical and Biophysical Research Communications, vol. 272, no. 2, pp. 362–369, 2000. View at Publisher · View at Google Scholar · View at Scopus
  215. S. Seigneurin-Venin, V. Bernard, and J. P. Tremblay, “Telomerase allows the immortalization of T antigen-positive DMD myoblasts: a new source of cells for gene transfer application,” Gene Therapy, vol. 7, no. 7, pp. 619–623, 2000. View at Google Scholar · View at Scopus
  216. C. Huard, P. Moisset, A. Dicaire et al., “Transplantation of dermal fibroblasts expressing MyoD1 in mouse muscles,” Biochemical and Biophysical Research Communications, vol. 248, no. 3, pp. 648–654, 1998. View at Publisher · View at Google Scholar · View at Scopus
  217. K. Goldring, G. E. Jones, C. A. Sewry, and D. J. Watt, “The muscle-specific marker desmin is expressed in a proportion of human dermal fibroblasts after their exposure to galectin-1,” Neuromuscular Disorders, vol. 12, no. 2, pp. 183–186, 2002. View at Publisher · View at Google Scholar · View at Scopus
  218. K. Goldring, G. E. Jones, R. Thiagarajah, and D. J. Watt, “The effect of galectin-1 on the differentiation of fibroblasts and myoblasts in vitro,” Journal of Cell Science, vol. 115, no. 2, pp. 355–366, 2002. View at Google Scholar · View at Scopus
  219. M. Wernig, A. Meissner, R. Foreman et al., “In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state,” Nature, vol. 448, no. 7151, pp. 318–324, 2007. View at Publisher · View at Google Scholar · View at Scopus
  220. K. Takahashi, K. Tanabe, M. Ohnuki et al., “Induction of pluripotent stem cells from adult human fibroblasts by defined factors,” Cell, vol. 131, no. 5, pp. 861–872, 2007. View at Publisher · View at Google Scholar · View at Scopus
  221. Y. Mizuno, H. Chang, K. Umeda et al., “Generation of skeletal muscle stem/progenitor cells from murine induced pluripotent stem cells,” FASEB Journal, vol. 24, no. 7, pp. 2245–2253, 2010. View at Publisher · View at Google Scholar · View at Scopus
  222. R. Darabi, W. Pan, D. Bosnakovski, J. Baik, M. Kyba, and R. C. R. Perlingeiro, “Functional myogenic engraftment from mouse iPS cells,” Stem Cell Reviews and Reports, vol. 7, no. 4, pp. 948–957, 2011. View at Publisher · View at Google Scholar · View at Scopus
  223. R. Darabi, R. W. Arpke, S. Irion et al., “Human ES- and iPS-derived myogenic progenitors restore DYSTROPHIN and improve contractility upon transplantation in dystrophic mice,” Cell Stem Cell, vol. 10, no. 5, pp. 610–619, 2012. View at Publisher · View at Google Scholar · View at Scopus
  224. A. Filareto, S. Parker, R. Darabi et al., “An ex vivo gene therapy approach to treat muscular dystrophy using inducible pluripotent stem cells,” Nature Communications, vol. 4, Article ID 1549, 2013. View at Publisher · View at Google Scholar
  225. S. Goudenege, C. Lebel, N. B. Huot et al., “Myoblasts derived from normal hESCs and dystrophic hiPSCs efficiently fuse with existing muscle fibers following transplantation,” Molecular Therapy, vol. 20, no. 11, pp. 2153–2167, 2012. View at Publisher · View at Google Scholar