Table of Contents
ISRN Polymer Science
Volume 2013 (2013), Article ID 590682, 6 pages
http://dx.doi.org/10.1155/2013/590682
Research Article

Study of Dielectric Relaxation Behavior of Liquid Crystal Copolyester Vectra-A by Thermally Stimulated Discharge Current Technique

Department of Physics, Maharishi Markandeshwar University Mullana, Ambala, Haryana 133 207, India

Received 31 January 2013; Accepted 27 February 2013

Academic Editors: A. Hashidzume and A. Mousa

Copyright © 2013 Sapna Kalia et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. V. Turnhout, “Electrets,” in Topics in Applied Physics, G. M. Sessler, Ed., vol. 33, Springer, Berlin, Germany, 1980. View at Google Scholar
  2. G. Collins and B. Long, “Thermally stimulated current/relaxation map analysis of the relaxation processes in aromatic polyester, liquid crystal polymer film,” Journal of Applied Polymer Science, vol. 53, no. 5, pp. 587–608, 1994. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Shimizu, T. Kitano, and K. Nakayama, “Thermally stimulated depolarization current study on the glass transition of a liquid crystalline copolyester,” Japanese Journal of Applied Physics, Part 2, vol. 35, no. 2, pp. L231–L233, 1996. View at Google Scholar · View at Scopus
  4. B. Chowdhury, “Thermally stimulated processes in a liquid crystal polymer,” Journal of Thermal Analysis and Calorimetry, vol. 56, no. 3, pp. 1167–1173, 1999. View at Google Scholar · View at Scopus
  5. C. Bucci, R. Fieschi, and G. Guidi, “Ionic thermocurrents in dielectrics,” Physical Review, vol. 148, no. 2, pp. 816–823, 1966. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Vanderschueren and J. Gasiot, “Field-induced thermally stimulated currents,” Thermally Stimulated Relaxations in Solids, vol. 37, pp. 135–223, 1979. View at Google Scholar
  7. M. S. Gaur, Ramlal, P. Shukla, P. Saxena, and R. K. Tiwari, “Thermally stimulated discharge current and fractional polarization studies in polyimide (Kapton-H) samples,” Indian Journal of Pure and Applied Physics, vol. 46, no. 2, pp. 118–122, 2008. View at Google Scholar · View at Scopus
  8. N. S. Yuksek, N. M. Gasanly, H. Ozkan, and O. Karci, “Trapping center parameters in TlInS2 layered crystals by thermally stimulated current measurements,” Acta Physica Polonica A, vol. 106, no. 1, pp. 95–103, 2004. View at Google Scholar · View at Scopus
  9. A. M. Donald and A. H. Windle, Liquid Crystalline Polymers, Cambridge University Press, 1992.
  10. X. J. Wang and Q. F. Zhou, Liquid Crystalline Polymers, World Scientific Publishing, 2004.
  11. D. S. Kalika and D. Y. Yoon, “Dielectric relaxation studies of poly(4-hydroxybenzoic acid) and copolyesters based on 4-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid,” Macromolecules, vol. 24, no. 11, pp. 3404–3412, 1991. View at Google Scholar · View at Scopus
  12. S. J. Lukacs, “Temperature-dependent photophysical properties of a liquid-crystalline random copolyester,” Journal of Physical Chemistry B, vol. 105, no. 17, pp. 3372–3377, 2001. View at Google Scholar · View at Scopus
  13. R. W. Lenz, “Balancing mesogenic and non-mesogenic groups in the design of thermotropic polyesters,” Faraday Discussions of the Chemical Society, vol. 79, pp. 21–32, 1985. View at Publisher · View at Google Scholar
  14. H. Shimizu and K. Nakayama, “Thermally stimulated depolarization current study of molecular motions in polychlorotrifluoroethylene,” Japanese Journal of Applied Physics, Part 1, vol. 28, no. 9, pp. 1616–1619, 1989. View at Google Scholar · View at Scopus
  15. B. B. Sauer, R. Beckerbauer, and L. Wang, “Thermally stimulated current and DSC studies of the broadened glass transition in liquid crystalline polymers,” Journal of Polymer Science B, vol. 31, no. 12, pp. 1861–1872, 1993. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Y. Cao and B. Wunderlich, “Phase transitions in mesophase macromolecules. V. Transitions in poly(oxy-1,4-phenylene carbonyl-co-oxy-2,6-naphthaloyl),” Journal of Polymer Science B, vol. 23, pp. 521–535, 1985. View at Publisher · View at Google Scholar
  17. B. B. Sauer and P. Avakian, “Cooperative relaxations in amorphous polymers studied by thermally stimulated current depolarization,” Polymer, vol. 33, no. 24, pp. 5128–5142, 1992. View at Google Scholar · View at Scopus
  18. J. P. Crine, “A new analysis of the results of thermally stimulated measurements in polymers,” Journal of Applied Physics, vol. 66, no. 3, pp. 1308–1313, 1989. View at Publisher · View at Google Scholar · View at Scopus
  19. M. T. Ahmed and T. Fahmy, “Study of the relaxation phenomenon of Poly(vinyl chloride-co-vinylacetate-co-2-hydroxypropyl acrylate)/Poly(methyl methacrylate) blends using TSDC-TS technique: dipole-dipole interaction approach,” Journal of the Korean Physical Society, vol. 59, pp. 98–104, 2011. View at Publisher · View at Google Scholar
  20. N. Mehta and A. Kumar, “Pre-exponential factor of Arrhenius equation for the isothermal crystallization of some Se-Ge, Se-In and Se-Te chalcogenide glasses,” Journal of Materials Science, vol. 42, no. 2, pp. 490–494, 2007. View at Publisher · View at Google Scholar · View at Scopus