Table of Contents
ISRN Dentistry
Volume 2013, Article ID 605847, 5 pages
http://dx.doi.org/10.1155/2013/605847
Research Article

Changes in Water Sorption and Solubility of Dental Adhesive Systems after Cigarette Smoke

1Department of Clinical Dentistry, School of Dentistry, Federal University of Bahia, Av. Araújo Pinho, 62, Canela, 40110-150 Salvador, BA, Brazil
2Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Chicago, IL 60612, USA

Received 16 June 2013; Accepted 10 July 2013

Academic Editors: C. Lekic and D. Wray

Copyright © 2013 Lívia Andrade Vitória et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. M. Bradley, J. B. Nguyen, A. C. Fournett, and J. D. Gardner, “Cigarette smoke exacerbates ventricular remodeling and dysfunction in the volume overloaded heart,” Microscopy and Microanalysis, vol. 18, no. 1, pp. 91–98, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. A. G. Schwartz, “Genetic epidemiology of cigarette smoke-induced lung disease,” Proceedings of the American Thoracic Society, vol. 9, no. 2, pp. 22–26, 2012. View at Google Scholar
  3. C. Dechanet, T. Anahory, J. C. Mathieu Daude et al., “Effects of cigarette smoking on reproduction,” Human Reproduction Update, vol. 17, no. 1, pp. 76–95, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. U. Van der Velden, A. Varoufaki, J. W. Hutter et al., “Effect of smoking and periodontal treatment on the subgingival microflora: a retrospective study,” Journal of Clinical Periodontology, vol. 30, no. 7, pp. 603–610, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Y. G. Takeuchi, A. M. Corrêa-Afonso, H. Pedrazzi, W. Dinelli, and R. G. Palma-Dibb, “Deposition of lead and cadmium released by cigarette smoke in dental structures and resin composite,” Microscopy Research and Technique, vol. 74, no. 3, pp. 287–291, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Z. Bazzi, M. J. Bindo, R. N. Rached, R. F. Mazur, S. Vieira, and E. M. de Souza, “The effect of at-home bleaching and toothbrushing on removal of coffee and cigarette smoke stains and color stability of enamel,” Journal of the American Dental Association, vol. 143, no. 5, pp. e1–e7, 2012. View at Google Scholar
  7. P. Mathias, T. A. Rossi, A. N. Cavalcanti, M. J. P. Lima, C. M. Fontes, and G. D. R. Nogueira-Filho, “Cigarette smoke combined with staining beverages decreases luminosity and increases pigmentation in composite resin restorations,” Compendium of Continuing Education in Dentistry, vol. 32, no. 2, pp. 66–70, 2011. View at Google Scholar · View at Scopus
  8. P. Mathias, L. Costa, L. O. Saraiva, T. A. Rossi, A. N. Cavalcanti, and G. da Rocha Nogueira-Filho, “Morphologic texture characterization allied to cigarette smoke increase pigmentation in composite resin restorations,” Journal of Esthetic and Restorative Dentistry, vol. 22, no. 4, pp. 252–259, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Mathias, L. D. G. Silva, L. de Oliveira Saraiva et al., “Effect of surface sealant and repolishing procedures on the color of composite resin exposed to cigarette smoke,” General Dentistry, vol. 58, no. 4, pp. 331–335, 2010. View at Google Scholar · View at Scopus
  10. M. N. Alkhatib, R. D. Holt, and R. Bedi, “Smoking and tooth discolouration: findings from a national cross-sectional study,” BMC Public Health, vol. 5, article 27, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. J. S. Almeida e Silva, E. M. de Araujo Jr., and E. Araujo, “Cigarette smoke affects bonding to dentin,” General Dentistry, vol. 58, no. 4, pp. 326–330, 2010. View at Google Scholar · View at Scopus
  12. C. Liu, S. Feng, J. Van Heemst, and K. G. McAdam, “New insights into the formation of volatile compounds in mainstream cigarette smoke,” Analytical and Bioanalytical Chemistry, vol. 396, no. 5, pp. 1817–1830, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. M. F. Dube and C. R. Green, “Methods of collection of smoke for analytical purposes,” Recent Advances in Tobacco Science, vol. 8, pp. 42–102, 1982. View at Google Scholar
  14. C. J. Smith and T. H. Fischer, “Particulate and vapor phase constituents of cigarette mainstream smoke and risk of myocardial infarction,” Atherosclerosis, vol. 158, no. 2, pp. 257–267, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Borgerding and H. Klus, “Analysis of complex mixtures—cigarette smoke,” Experimental and Toxicologic Pathology, vol. 57, no. 1, pp. 43–73, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Adamson, S. Hughes, D. Azzopardi, J. McAughey, and M. D. Gaça, “Real-time assessment of cigarette smoke particle deposition in vitro,” Chemistry Central Journal, vol. 6, article 98, 2012. View at Google Scholar
  17. J. Bartalis, W. G. Chan, and J. B. Wooten, “A new look at radicals in cigarette smoke,” Analytical Chemistry, vol. 79, no. 13, pp. 5103–5106, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Ito, T. Hoshino, M. Iijima, N. Tsukamoto, D. H. Pashley, and T. Saito, “Water sorption/solubility of self-etching dentin bonding agents,” Dental Materials, vol. 26, no. 7, pp. 617–626, 2010. View at Google Scholar · View at Scopus
  19. J. Malacarne, R. M. Carvalho, M. F. de Goes et al., “Water sorption/solubility of dental adhesive resins,” Dental Materials, vol. 22, no. 10, pp. 973–980, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. K. J. Söderholm, “Degradation of glass filler in experimental composites,” Journal of Dental Research, vol. 60, no. 11, pp. 1867–1875, 1981. View at Google Scholar · View at Scopus
  21. S. Ito, M. Hashimoto, B. Wadgaonkar et al., “Effects of resin hydrophilicity on water sorption and changes in modulus of elasticity,” Biomaterials, vol. 26, no. 33, pp. 6449–6459, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Piwowarczyk and H.-C. Lauer, “Mechanical properties of luting cements after water storage,” Operative Dentistry, vol. 28, no. 5, pp. 535–542, 2003. View at Google Scholar · View at Scopus
  23. I. M. Hamouda, “Effects of various beverages on hardness, roughness, and solubility of esthetic restorative materials,” Journal of Esthetic and Restorative Dentistry, vol. 23, no. 5, pp. 315–322, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Bail, J. Malacarne-Zanon, S. M. A. Silva et al., “Effect of air-drying on the solvent evaporation, degree of conversion and water sorption/solubility of dental adhesive models,” Journal of Materials Science. Materials in Medicine, vol. 23, no. 3, pp. 629–638, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Musanje and B. W. Darvell, “Aspects of water sorption from the air, water and artificial saliva in resin composite restorative materials,” Dental Materials, vol. 19, no. 5, pp. 414–422, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Y. Marghalani, “Sorption and solubility characteristics of self-adhesive resin cements,” Dental Materials, vol. 28, no. 10, pp. 187–198, 2012. View at Google Scholar
  27. L. G. Lopes, A. D. V. Jardim Filho, J. B. de Souza, D. Rabelo, E. B. Franco, and G. C. de Freitas, “Influence of pulse-delay curing on sorption and solubility of a composite resin,” Journal of Applied Oral Science, vol. 17, no. 1, pp. 27–31, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Argolo, D. C. Oliveira, C. M. Fontes, A. F. Lima, A. P. de Freitas, and A. N. Cavalcanti, “Effect of increased dwell times for solvent evaporation on the bond strength and degree of conversion of an ethanol-based adhesive system,” Acta Odontológica Latinoamericana, vol. 25, no. 1, pp. 109–114, 2012. View at Google Scholar
  29. S. M. Le Mesurier, B. W. Stewart, and A. W. J. Lykke, “Injury to type-2 pneumocytes in rats exposed to cigarette smoke,” Environmental Research, vol. 24, no. 1, pp. 207–217, 1981. View at Google Scholar · View at Scopus
  30. J. Malacarne-Zanon, D. H. Pashley, K. A. Agee et al., “Effects of ethanol addition on the water sorption/solubility and percent conversion of comonomers in model dental adhesives,” Dental Materials, vol. 25, no. 10, pp. 1275–1284, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. I. Sideridou, V. Tserki, and G. Papanastasiou, “Study of water sorption, solubility and modulus of elasticity of light-cured dimethacrylate-based dental resins,” Biomaterials, vol. 24, no. 4, pp. 655–665, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. P. Dhanpal, C. K. Y. Yiu, N. M. King, F. R. Tay, and N. Hiraishi, “Effect of temperature on water sorption and solubility of dental adhesive resins,” Journal of Dentistry, vol. 37, no. 2, pp. 122–132, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. E. L. Pashley, Y. Zhang, P. E. Lockwood, F. A. Rueggeberg, and D. H. Pashley, “Effects of HEMA on water evaporation from water-HEMA mixtures,” Dental Materials, vol. 14, no. 1, pp. 6–10, 1998. View at Google Scholar · View at Scopus