Table of Contents
ISRN Tribology
Volume 2013 (2013), Article ID 607279, 11 pages
http://dx.doi.org/10.5402/2013/607279
Research Article

Friction Behavior of a Wet Clutch Subjected to Accelerated Degradation

1Flanders’ Mechatronics Technology Centre (FMTC), Celestijnenlaan 300D, 3001 Heverlee, Belgium
2Division PMA, Department of Mechanical Engineering, Katholieke Universiteit Leuven (KU Leuven), Celestijnenlaan 300B, 3001 Heverlee, Belgium

Received 19 November 2012; Accepted 10 December 2012

Academic Editors: D. Das, M. Dienwiebel, and J. Wang

Copyright © 2013 Agusmian Partogi Ompusunggu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Al-Bender, V. Lampaert, and J. Swevers, “A novel generic model at asperity level for dry friction force dynamics,” Tribology Letters, vol. 16, no. 1-2, pp. 81–93, 2004. View at Google Scholar · View at Scopus
  2. T. Tjahjowidodo, Characterization, modelling and control of mechanical systems comprising material and geometrical nonlinearities [Ph.D. thesis], Katholieke Unversiteit Leuven, Department of Mechanical Engineering, Division PMA, Leuven, Belgium, 2006.
  3. “SAE-International, SAE No. 2 Friction Test Machine Durability Test,” Vol. SAE J2489, 2012.
  4. W. Ost, P. De Baets, and J. Degrieck, “The tribological behaviour of paper friction plates for wet clutch application investigated on SAE#II and pin-on-disk test rigs,” Wear, vol. 249, no. 5-6, pp. 361–371, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. V. Lampaert, F. Al-Bender, and J. Swevers, “A generalized maxwell-slip friction model appropriate for control purposes,” in Proceedings of the IEEE International Conference on Physics and Control, 2003.
  6. F. Al-Bender, V. Lampaert, and J. Swevers, “The generalized Maxwell-slip model: a novel model for friction simulation and compensation,” IEEE Transactions on Automatic Control, vol. 50, no. 11, pp. 1883–1887, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Li, M. Devlin, S. H. Tersigni, T. C. Jao, K. Yatsunami, and T. M. Cameron, “Fundamentals of Anti-Shudder Durability: Part I-Clutch Plate Study,” SAE Technical Paper 2003-01-1983, 51–62, 2003.
  8. T. Newcomb, M. Sparrow, and B. Ciupak, “Glaze Analysis of Friction Plates,” SAE Technical Paper 2006-01-3244.
  9. T. VanPeteghem and W. Vandelaer, Levensduurvoorspelling van Transmissiesystemen voor Off-road Voertuigen [M.S. thesis], Katholieke Unversiteit Leuven, Department of Mechanical Engineering, Division PMA, Leuven, Belgium, 2011.
  10. J. Fei, H.-J. Li, L.-H. Qi, Y.-W. Fu, and X.-T. Li, “Carbon-fiber reinforced paper-based friction material: study on friction stability as a function of operating variables,” Journal of Tribology, vol. 130, no. 4, Article ID 041605, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. A. P. Ompusunggu, P. Sas, and H. VanBrussel, “Influence of adhesive wear and thermal degradation on the frictional characteristics of paperbased friction materials: a comparative study,” ISRN Tribology, vol. 2013, Article ID 739202, 2013. View at Publisher · View at Google Scholar
  12. T. Janssens, Dynamic characterisation and modelling of dry and boundary lubricated friction for stabilisation and control purposes [Ph.D. thesis], Katholieke Unversiteit Leuven, Department of Mechanical Engineering, Division PMA, Leuven, Belgium, 2010.
  13. R. H. Byrd, J. C. Gilbert, and J. Nocedal, “A trust region method based on interior point techniques for nonlinear programming,” Mathematical Programming B, vol. 89, no. 1, pp. 149–185, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. R. H. Byrd, M. E. Hribar, and J. Nocedal, “An interior point algorithm for large-scale nonlinear programming,” SIAM Journal on Optimization, vol. 9, no. 4, pp. 877–900, 1999. View at Google Scholar · View at Scopus
  15. A. P. Ompusunggu, Intelligent monitoring and prognostics of automotive clutches [Ph.D. thesis], Katholieke Unversiteit Leuven, Department of Mechanical Engineering, Division PMA, Leuven, Belgium, 2012.
  16. H. Sojoudi and M. M. Khonsari, “On the modeling of quasi-steady and unsteady dynamic friction in sliding lubricated line contact,” Journal of Tribology, vol. 132, no. 1, Article ID 012101, 9 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus