Table of Contents
ISRN Endocrinology
Volume 2013, Article ID 608313, 9 pages
http://dx.doi.org/10.1155/2013/608313
Review Article

Wound Bed Preparation for Chronic Diabetic Foot Ulcers

Department of Reconstructive Sciences, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia

Received 15 December 2012; Accepted 16 January 2013

Academic Editors: Z. Bouizar, Z. Canturk, W. C. Hymer, N. Tentolouris, and T.-H. Tung

Copyright © 2013 Arman Zaharil Mat Saad et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. G. Sibbald, H. Orsted, G. S. Schultz, P. Coutts, and D. Keast, “Preparing the wound bed 2003: focus on infection and inflammation,” Ostomy Wound Manage, vol. 49, no. 11, pp. 23–51, 2003. View at Google Scholar · View at Scopus
  2. G. S. Schultz, R. G. Sibbald, V. Falanga et al., “Wound bed preparation: a systematic approach to wound management,” Wound Repair and Regeneration, vol. 11, supplement 1, pp. S1–S28, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. R. G. Sibbald, H. L. Orsted, P. M. Coutts, and D. H. Keast, “Best practice recommendations for preparing the wound bed: update 2006,” Advances in Skin & Wound Care, vol. 20, no. 7, pp. 390–405, 2007. View at Google Scholar
  4. C. A. Abbott, A. L. Carrington, H. Ashe et al., “The North-West Diabetes Foot Care Study: incidence of, and risk factors for, new diabetic foot ulceration in a community-based patient cohort,” Diabetic Medicine, vol. 19, no. 5, pp. 377–384, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Kumar, H. A. Ashe, L. N. Parnell et al., “The prevalence of foot ulceration and its correlates in Type 2 diabetic patients: a population-based study,” Diabetic Medicine, vol. 11, no. 5, pp. 480–484, 1994. View at Google Scholar · View at Scopus
  6. T. M. E. Davis, I. M. Stratton, C. J. Fox, R. R. Holman, and R. C. Turner, “U.K. Prospective Diabetes Study 22: effect of age at diagnosis on diabetic tissue damage during the first 6 years of NIDDM,” Diabetes Care, vol. 20, no. 9, pp. 1435–1441, 1997. View at Google Scholar · View at Scopus
  7. G. E. Reiber, D. G. Smith, L. Vileikyte et al., “Causal pathways for incident lower-extremity ulcers in patients with diabetes from two settings,” Diabetes Care, vol. 22, no. 1, pp. 157–162, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Singh, D. G. Armstrong, and B. A. Lipsky, “Preventing foot ulcers in patients with diabetes,” JAMA, vol. 293, no. 2, pp. 217–228, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Medina, P. G. Scott, A. Ghahary, and E. E. Tredget, “Pathophysiology of chronic nonhealing wounds,” Journal of Burn Care and Rehabilitation, vol. 26, no. 4, pp. 306–319, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Tomic-Canic and H. Brem, “Gene array technology and pathogenesis of chronic wounds,” American Journal of Surgery, vol. 188, no. 1, supplement 1, pp. 67–72, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. W. J. Jeffcoate and K. G. Harding, “Diabetic foot ulcers,” The Lancet, vol. 361, no. 9368, pp. 1545–1551, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Leung, “Diabetic foot ulcers—a comprehensive review,” Surgeon, vol. 5, no. 4, pp. 219–231, 2007. View at Google Scholar · View at Scopus
  13. Z. Merza and S. Tesfaye, “The risk factors for diabetic foot ulceration,” Foot, vol. 13, no. 3, pp. 125–129, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Ligresti and F. Bo, “Wound bed preparation of difficult wounds: an evolution of the principles of TIME,” International Wound Journal, vol. 4, no. 1, pp. 21–43, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Panuncialman and V. Falanga, “The science of wound bed preparation,” Clinics in Plastic Surgery, vol. 34, no. 4, pp. 621–632, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. M. S. Granick, M. Tenenhaus, K. R. Knox, and J. P. Ulm, “Comparison of wound irrigation and tangential hydrodissection in bacterial clearance of contaminated wounds: results of a randomized, controlled clinical study,” Ostomy Wound Management, vol. 53, no. 4, pp. 64–72, 2007. View at Google Scholar · View at Scopus
  17. M. Granick, J. Boykin, R. Gamelli, G. Schultz, and M. Tenenhaus, “Toward a common language: surgical wound bed preparation and debridement,” Wound Repair and Regeneration, vol. 14, no. 1, supplement 1, pp. S1–S10, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. K. R. Knox, R. O. Datiashvili, and M. S. Granick, “Surgical wound bed preparation of chronic and acute wounds,” Clinics in Plastic Surgery, vol. 34, no. 4, pp. 633–641, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Edwards and S. Stapley, “Debridement of diabetic foot ulcers,” Cochrane Database of Systematic Reviews, no. 1, Article ID CD003556, 2010. View at Google Scholar · View at Scopus
  20. R. A. Sherman, “Maggot therapy for treating diabetic foot ulcers unresponsive to conventional therapy,” Diabetes Care, vol. 26, no. 2, pp. 446–451, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. A. G. Paul, N. W. Ahmad, H. Lee et al., “Maggot debridement therapy with Lucilia cuprina: a comparison with conventional debridement in diabetic foot ulcers,” International Wound Journal, vol. 6, no. 1, pp. 39–46, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Edwards and S. Stapley, “Debridement of diabetic foot ulcers,” Cochrane Database of Systematic Reviews, no. 1, Article ID CD003556, 2010. View at Google Scholar · View at Scopus
  23. Y. O. Markevich, J. McLeod-Roberts, M. Mousley, and E. Melloy, “Maggot therapy for diabetic neuropathic foot wounds,” Diabetologia, vol. 43, supplement 1, article A15, 2000. View at Google Scholar
  24. J. L. Jensen, J. Seeley, and B. Gillin, “Diabetic foot ulcerations. A controlled, randomized comparison of two moist wound healing protocols: carrasyn Hydrogel Wound dressing and wet-to-moist saline gauze,” Advances in Wound Care, vol. 11, no. 7, pp. 1–4, 1998. View at Google Scholar · View at Scopus
  25. P. A. D'Hemecourt, J. M. Smiell, and M. R. Karim, “Sodium carboxymethylcellulose aqueous-based gel vs. becaplermin gel in patients with nonhealing lower extremity diabetic ulcers,” Wounds, vol. 10, no. 3, pp. 69–75, 1998. View at Google Scholar · View at Scopus
  26. A. Piaggesi, E. Schipani, F. Campi et al., “Conservative surgical approach versus nonsurgical management for diabetic neuropathic foot ulcers: a randomized trial,” Diabetic Medicine, vol. 15, no. 5, pp. 412–417, 1998. View at Google Scholar
  27. R. E. Pecoraro, G. E. Reiber, and E. M. Burgess, “Pathways to diabetic limb amputation. Basis for prevention,” Diabetes Care, vol. 13, no. 5, pp. 513–521, 1990. View at Google Scholar · View at Scopus
  28. A. Ugur and Ö. Ceylan, “Occurrence of resistance to antibiotics, metals, and plasmids in clinical strains of Staphylococcus spp,” Archives of Medical Research, vol. 34, no. 2, pp. 130–136, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Apelqvist and G. Ragnarson Tennvall, “Cavity foot ulcers in diabetic patients; a comparative study of cadexomer iodine ointment and standard treatment. An economic analysis alongside a clinical trial,” Acta Dermato-Venereologica, vol. 76, no. 3, pp. 231–235, 1996. View at Google Scholar · View at Scopus
  30. G. D. Winter, “Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig,” Nature, vol. 193, no. 4812, pp. 293–294, 1962. View at Publisher · View at Google Scholar · View at Scopus
  31. M. E. Edmonds, A. V. M. Foster, and L. Sanders, A Practical Manual of Diabetic Footcare, Blackwell, Oxford, UK, 2004.
  32. M. Edmonds, A.V.M. Foster, and P. Vowden, “Wound bed preparation for diabetic foot ulcers,” in European Wound Management Association (EWMA). Position Document: Wound Bed Preparation in Practice, MEP Ltd, London, UK, 2004. View at Google Scholar
  33. V. Falanga, “Wound bed preparation: science applied to practice,” in Wound Bed Preparation in Practice, pp. 2–5, EWMA Position Document, 2004. View at Google Scholar
  34. A. S. Halim, T. L. Khoo, and A. Z. Mat Saad, “Wound bed preparation from a clinical perspective,” Indian Journal of Plastic Surgery, vol. 45, pp. 193–202, 2012. View at Google Scholar
  35. R. G. Sibbald, L. Goodman, K. Y. Woo et al., “Special considerations in wound bed preparation 2011: an update,” Advances in Skin & Wound Care, vol. 24, no. 9, pp. 415–436, 2011. View at Google Scholar
  36. A. Z. Mat Saad, T. L. Khoo, A. A. Dorai, and A. S. Halim, “The versatility of a glycerol-preserved skin allograft as an adjunctive treatment to free flap reconstruction,” Indian Journal of Plastic Surgery, vol. 42, no. 1, pp. 94–99, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Z. M. Saad, A. S. Halim, and T. L. Khoo, “The use of glycerol-preserved skin allograft in conjunction with reconstructive and flap surgery: seven years of experience,” Journal of Reconstructive Microsurgery, vol. 27, no. 2, pp. 103–108, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. O. Borgquist, L. Gustafsson, R. Ingemansson, and M. Malmsjö, “Micro-and Macromechanical effects on the wound bed of negative pressure wound therapy using gauze and foam,” Annals of Plastic Surgery, vol. 64, no. 6, pp. 789–793, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Eneroth and W. H. van Houtum, “The value of debridement and Vacuum-Assisted Closure (V.A.C.) Therapy in diabetic foot ulcers,” Diabetes/Metabolism Research and Reviews, vol. 24, supplement 1, pp. S76–S80, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. D. G. Armstrong, H. C. Nguyen, L. A. Lavery, C. H. M. Van Schie, A. J. M. Boulton, and L. B. Harkless, “Off-loading the diabetic foot wound: a randomized clinical trial,” Diabetes Care, vol. 24, no. 6, pp. 1019–1022, 2001. View at Google Scholar · View at Scopus
  41. E. B. Jude, R. Blakytny, J. Bulmer, A. J. M. Boulton, and M. W. J. Ferguson, “Transforming growth factor-beta 1, 2, 3 and receptor type I and II in diabetic foot ulcers,” Diabetic Medicine, vol. 19, no. 6, pp. 440–447, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. R. Blakytny, E. B. Jude, J. Martin Gibson, A. J. M. Boulton, and M. W. J. Ferguson, “Lack of insulin-like growth factor I (IGF1) in the basal keratinocyte layer of diabetic skin and diabetic foot ulcers,” Journal of Pathology, vol. 190, no. 5, pp. 589–594, 2000. View at Publisher · View at Google Scholar
  43. Y. Duraisamy, M. Slevin, N. Smith et al., “Effect of glycation on basic fibroblast growth factor induced angiogenesis and activation of associated signal transduction pathways in vascular endothelial cells: possible relevance to wound healing in diabetes,” Angiogenesis, vol. 4, no. 4, pp. 277–288, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. Z. J. Liu and O. C. Velazquez, “Hyperoxia, endothelial progenitor cell mobilization, and diabetic wound healing,” Antioxidants and Redox Signaling, vol. 10, no. 11, pp. 1869–1882, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. D. Fivenson and L. Scherschun, “Clinical and economic impact of Apligraf for the treatment of nonhealing venous leg ulcers,” International Journal of Dermatology, vol. 42, no. 12, pp. 960–965, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. R. G. Sibbald, G. Torrance, M. Hux, C. Attard, and N. Milkovich, “Cost-effectiveness of becaplermin for non-healing neuropathic diabetic foot ulcers,” Ostomy Wound Manage, vol. 49, no. 11, pp. 76–84, 2003. View at Google Scholar
  47. M. C. Robson, T. J. Phillips, V. Falanga et al., “Randomized trial of topically applied repifermin (recombinant human keratinocyte growth factor-2) to accelerate wound healing in venous ulcers,” Wound Repair and Regeneration, vol. 9, no. 5, pp. 347–352, 2001. View at Publisher · View at Google Scholar · View at Scopus
  48. R. M. da Costa, F. M. R. Jesus, C. Aniceto, and M. Mendes, “Randomized, double-blind, placebo-controlled, dose-ranging study of granulocyte-macrophage colony stimulating factor in patients with chronic venous leg ulcers,” Wound Repair and Regeneration, vol. 7, no. 1, pp. 17–25, 1999. View at Publisher · View at Google Scholar · View at Scopus
  49. D. G. Armstrong and L. A. Lavery, “Diabetic foot ulcers: prevention, diagnosis and classification,” American Family Physician, vol. 57, no. 6, pp. 1325–1332, 1998. View at Google Scholar · View at Scopus
  50. Y. Arad, V. Fonseca, A. Peters, and A. Vinik, “Beyond the monofilament for the insensate diabetic foot: a systematic review of randomized trials to prevent the occurrence of plantar foot ulcers in patients with diabetes,” Diabetes Care, vol. 34, no. 4, pp. 1041–1046, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. L. A. Lavery, K. R. Higgins, D. R. Lanctot et al., “Preventing diabetic foot ulcer recurrence in high-risk patients: use of temperature monitoring as a self-assessment tool,” Diabetes Care, vol. 30, no. 1, pp. 14–20, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. L. A. Lavery, K. R. Higgins, D. R. Lanctot et al., “Home monitoring of foot skin temperatures to prevent ulceration,” Diabetes Care, vol. 27, no. 11, pp. 2642–2647, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. J. M. Smiell, T. J. Wieman, D. L. Steed, B. H. Perry, A. R. Sampson, and B. H. Schwab, “Efficacy and safety of becaplermin (recombinant human platelet-derived growth factor-BB)in patients with nonhealing, lower extremity diabetic ulcers: a combined analysis of four randomized studies,” Wound Repair and Regeneration, vol. 7, no. 5, pp. 335–346, 1999. View at Publisher · View at Google Scholar · View at Scopus
  54. L. K. Branski, G. G. Gauglitz, D. N. Herndon, and M. G. Jeschke, “A review of gene and stem cell therapy in cutaneous wound healing,” Burns, vol. 35, no. 2, pp. 171–180, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. K. McFarlin, X. Gao, Y. B. Liu et al., “Bone marrow-derived mesenchymal stromal cells accelerate wound healing in the rat,” Wound Repair and Regeneration, vol. 14, no. 4, pp. 471–478, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. G. G. Gauglitz and M. G. Jeschke, “Combined gene and stem cell therapy for cutaneous wound healing,” Molecular Pharmaceutics, vol. 8, no. 5, pp. 1471–1479, 2011. View at Publisher · View at Google Scholar
  57. R. S. Kirsner, R. Warriner, M. Michela, L. Stasik, and K. Freeman, “Advanced biological therapies for diabetic foot ulcers,” Archives of Dermatology, vol. 146, no. 8, pp. 857–862, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. S. Enoch, J. E. Grey, and K. G. Harding, “ABC of wound healing. Non-surgical drug treatments,” British Medical Journal, vol. 332, pp. 900–903, 2006. View at Google Scholar
  59. W. P. L. Fan, M. Rashid, and S. Enoch, “Current advances in modern wound healing,” Wounds UK, vol. 6, no. 3, pp. 22–36, 2010. View at Google Scholar · View at Scopus