Table of Contents
ISRN Hematology
Volume 2013, Article ID 614619, 19 pages
http://dx.doi.org/10.1155/2013/614619
Review Article

CD47: A Cell Surface Glycoprotein Which Regulates Multiple Functions of Hematopoietic Cells in Health and Disease

Section for Histology and Cell Biology, Department of Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden

Received 31 October 2012; Accepted 19 November 2012

Academic Editors: L. Bordin, K. Oritani, F. W. Quelle, K. Suzukawa, and K.-F. Wong

Copyright © 2013 Per-Arne Oldenborg. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. P. Lindberg, H. D. Gresham, E. Schwarz, and E. J. Brown, “Molecular cloning of integrin-associated protein: an immunoglobulin family member with multiple membrane-spanning domains implicated in αVβ3-dependent ligand binding,” Journal of Cell Biology, vol. 123, no. 2, pp. 485–496, 1993. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Brown, L. Hooper, T. Ho, and H. Gresham, “Integrin-associated protein: a 50-kD plasma membrane antigen physically and functionally associated with integrins,” Journal of Cell Biology, vol. 111, no. 6, pp. 2785–2794, 1990. View at Publisher · View at Google Scholar · View at Scopus
  3. F. P. Lindberg, H. D. Gresham, M. I. Reinhold, and E. J. Brown, “Integrin-associated protein immunoglobulin domain is necessary for efficient vitronectin bead binding,” Journal of Cell Biology, vol. 134, no. 5, pp. 1313–1322, 1996. View at Google Scholar · View at Scopus
  4. F. P. Lindberg, D. C. Bullard, T. E. Caver, H. D. Gresham, A. L. Beaudet, and E. J. Brown, “Decreased resistance to bacterial infection and granulocyte defects in IAP-deficient mice,” Science, vol. 274, no. 5288, pp. 795–798, 1996. View at Publisher · View at Google Scholar · View at Scopus
  5. F. P. Lindberg, D. M. Lublin, M. J. Telen et al., “Rh-related antigen CD47 is the signal-transducer integrin-associated protein,” Journal of Biological Chemistry, vol. 269, no. 3, pp. 1567–1570, 1994. View at Google Scholar · View at Scopus
  6. I. G. Campbell, P. S. Freemont, W. Foulkes, and J. Trowsdale, “An ovarian tumor marker with homology to vaccinia virus contains an IgV- like region and multiple transmembrane domains,” Cancer Research, vol. 52, no. 19, pp. 5416–5420, 1992. View at Google Scholar · View at Scopus
  7. L. G. Poels, D. Peters, Y. van Megen et al., “Monoclonal antibody against human ovarian tumor-associated antigens,” Journal of the National Cancer Institute, vol. 76, no. 5, pp. 781–791, 1986. View at Google Scholar
  8. M. I. Reinhold, F. P. Lindberg, D. Plas, S. Reynolds, M. G. Peters, and E. J. Brown, “In vivo expression of alternatively spliced forms of integrin-associated protein (CD47),” Journal of Cell Science, vol. 108, no. 11, pp. 3419–3425, 1995. View at Google Scholar · View at Scopus
  9. E. H. Y. Lee, Y. P. Hsieh, C. L. Yang, K. J. Tsai, and C. H. Liu, “Induction of integrin-associated protein (IAP) mRNA expression during memory consolidation in rat hippocampus,” European Journal of Neuroscience, vol. 12, no. 3, pp. 1105–1112, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Kaur, S. A. Kuznetsova, M. L. Pendrak et al., “Heparan sulfate modification of the transmembrane receptor CD47 is necessary for inhibition of T Cell receptor signaling by thrombospondin-1,” Journal of Biological Chemistry, vol. 286, no. 17, pp. 14991–15002, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. H. D. Gresham, J. L. Goodwin, P. M. Allen, D. C. Anderson, and E. J. Brown, “A novel member of the integrin receptor family mediates Arg-Gly-Asp-stimulated neutrophil phagocytosis,” Journal of Cell Biology, vol. 108, no. 5, pp. 1935–1943, 1989. View at Google Scholar · View at Scopus
  12. D. Cooper, F. P. Lindberg, J. R. Gamble, E. J. Brown, and M. A. Vadas, “The transendothelial migration of neutrophils involves integrin-associated protein (CD47),” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 9, pp. 3978–3982, 1995. View at Google Scholar · View at Scopus
  13. C. A. Parkos, S. P. Colgan, T. W. Liang et al., “CD47 mediates post-adhesive events required for neutrophil migration across polarized intestinal epithelia,” Journal of Cell Biology, vol. 132, no. 3, pp. 437–450, 1996. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Liu, D. Merlin, S. L. Burst, M. Pochet, J. L. Madara, and C. A. Parkos, “The role of CD47 in neutrophil transmigration: increased rate of migration correlates with increased cell surface expression of CD47,” Journal of Biological Chemistry, vol. 276, no. 43, pp. 40156–40166, 2001. View at Google Scholar · View at Scopus
  15. R. M. Senior, H. D. Gresham, G. L. Griffin, E. J. Brown, and A. E. Chung, “Entactin stimulates neutrophil adhesion and chemotaxis through interactions between its Arg-Gly-Asp (RGD) domain and the leukocyte response integrin,” Journal of Clinical Investigation, vol. 90, no. 6, pp. 2251–2257, 1992. View at Google Scholar · View at Scopus
  16. J. Chung, A. G. Gao, and W. A. Frazier, “Thrombspondin acts via integrin-associated protein to activate the platelet integrin βllbβ3,” Journal of Biological Chemistry, vol. 272, no. 23, pp. 14740–14746, 1997. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Chung, X. Q. Wang, F. P. Lindberg, and W. A. Frazier, “Thrombospondin-1 acts via IAP/CD47 to synergize with collagen in α2β1- mediated platelet activation,” Blood, vol. 94, no. 2, pp. 642–648, 1999. View at Google Scholar · View at Scopus
  18. X. Q. Wang and W. A. Frazier, “The thrombospondin receptor CD47 modulates and associates with α2β1 integrin in vascular smooth muscle cells,” Molecular Biology of the Cell, vol. 9, no. 4, pp. 865–874, 1998. View at Google Scholar · View at Scopus
  19. J. E. Brittain, J. Han, K. I. Ataga, E. P. Orringer, and L. V. Parise, “Mechanism of CD47-induced α4β1 integrin activation and adhesion in sickle reticulocytes,” Journal of Biological Chemistry, vol. 279, no. 41, pp. 42393–42402, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Yoshida, Y. Tomiyama, J. Ishikawa et al., “Integrin-associated protein/CD47 regulates motile activity in human B-cell lines through CDC42,” Blood, vol. 96, no. 1, pp. 234–241, 2000. View at Google Scholar · View at Scopus
  21. J. Koenigsknecht and G. Landreth, “Microglial phagocytosis of fibrillar β-amyloid through a β1 integrin-dependent mechanism,” Journal of Neuroscience, vol. 24, no. 44, pp. 9838–9846, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Orazizadeh, H. S. Lee, B. Groenendijk et al., “CD47 associates with alpha 5 integrin and regulates responses of human articular chondrocytes to mechanical stimulation in an in vitro model,” Arthritis Research & Therapy, vol. 10, no. 1, article R4, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. J. C. Adams and J. Lawler, “The thrombospondins,” International Journal of Biochemistry and Cell Biology, vol. 36, no. 6, pp. 961–968, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. A. G. Gao, F. P. Lindberg, J. M. Dimitry, E. J. Brown, and W. A. Frazier, “Thrombospondin modulates αVβ3 function through integrin-associated protein,” Journal of Cell Biology, vol. 135, no. 2, pp. 533–544, 1996. View at Publisher · View at Google Scholar · View at Scopus
  25. W. A. Frazier, A. G. Gao, J. Dimitry et al., “The thrombospondin receptor integrin-associated protein (CD47) functionally couples to heterotrimeric Gi,” Journal of Biological Chemistry, vol. 274, no. 13, pp. 8554–8560, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. J. S. Isenberg, F. Hyodo, L. K. Pappan et al., “Blocking thrombospondin-1/CD47 signaling alleviates deleterious effects of aging on tissue responses to ischemia,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 12, pp. 2582–2588, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. J. S. Isenberg, M. J. Romeo, C. Yu et al., “Thrombospondin-1 stimulates platelet aggregation by blocking the antithrombotic activity of nitric oxide/cGMP signaling,” Blood, vol. 111, no. 2, pp. 613–623, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. S. D. Blystone, F. P. Lindberg, S. E. LaFlamme, and E. J. Brown, “Integrin β3 cytoplasmic tail is necessary and sufficient for regulation of α5β1 phagocytosis by αVβ3 and integrin-associated protein,” Journal of Cell Biology, vol. 130, no. 3, pp. 745–754, 1995. View at Publisher · View at Google Scholar · View at Scopus
  29. R. A. Rebres, L. E. Vaz, J. M. Green, and E. J. Brown, “Normal ligand binding and signaling by CD47 (Integrin-associated protein) requires a long range disulfide bond between the extracellular and membrane-spanning domains,” Journal of Biological Chemistry, vol. 276, no. 37, pp. 34607–34616, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. J. F. McDonald, A. Zheleznyak, and W. A. Frazier, “Cholesterol-independent interactions with CD47 enhance αVβ3 avidity,” Journal of Biological Chemistry, vol. 279, no. 17, pp. 17301–17311, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. M. A. Schwartz, E. J. Brown, and B. Fazeli, “A 50-kDa integrin-associated protein is required for integrin-regulated calcium entry in endothelial cells,” Journal of Biological Chemistry, vol. 268, no. 27, pp. 19931–19934, 1993. View at Google Scholar · View at Scopus
  32. T. A. Shahan, A. Fawzi, G. Bellon, J. C. Monboisse, and N. A. Kefalides, “Regulation of tumor cell chemotaxis by type IV collagen is mediated by a Ca2+-dependent mechanism requiring CD47 and the integrin αVβ3,” Journal of Biological Chemistry, vol. 275, no. 7, pp. 4796–4802, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. R. A. Rebres, J. M. Green, M. I. Reinhold, M. Ticchioni, and E. J. Brown, “Membrane raft association of CD47 is necessary for actin polymerization and protein kinase C θ translocation in its synergistic activation of T cells,” Journal of Biological Chemistry, vol. 276, no. 10, pp. 7672–7680, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Waclavicek, O. Majdic, T. Stulnig et al., “T cell stimulation via CD47: agonistic and antagonistic effects of CD47 monoclonal antibody 1/1A4,” Journal of Immunology, vol. 159, no. 11, pp. 5345–5354, 1997. View at Google Scholar · View at Scopus
  35. A. L. Wu, J. Wang, A. Zheleznyak, and E. J. Brownt, “Ubiquitin-related proteins regulate interaction of vimentin intermediate filaments with the plasma membrane,” Molecular Cell, vol. 4, no. 4, pp. 619–625, 1999. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Miyashita, H. Ohnishi, H. Okazawa et al., “Promotion of neurite and filopodium formation by CD47: roles of integrins, rac, and Cdc42,” Molecular Biology of the Cell, vol. 15, no. 8, pp. 3950–3963, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Murata, H. Ohnishi, H. Okazawa et al., “CD47 promotes neuronal development through Src- and FRG/Vav2-mediated activation of Rac and Cdc42,” Journal of Neuroscience, vol. 26, no. 48, pp. 12397–12407, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. O. J. Broom, Y. Zhang, P. A. Oldenborg, R. Massoumi, and A. Sjölander, “CD47 regulates collagen I-induced cyclooxygenase-2 expression and intestinal epithelial cell migration,” PLoS ONE, vol. 4, no. 7, Article ID e6371, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. W. Chuang and C. F. Lagenaur, “Central nervous system antigen P84 can serve as a substrate for neurite outgrowth,” Developmental Biology, vol. 137, no. 2, pp. 219–232, 1990. View at Google Scholar · View at Scopus
  40. S. Comu, W. Weng, S. Olinsky et al., “The murine P84 neural adhesion molecule is SHPS-1, a member of the phosphatase-binding protein family,” Journal of Neuroscience, vol. 17, no. 22, pp. 8702–8710, 1997. View at Google Scholar · View at Scopus
  41. Y. Fujioka, T. Matozaki, T. Noguchi et al., “A novel membrane glycoprotein, SHPS-1, that binds the SH2-domain- containing protein tyrosine phosphatase SHP-2 in response to mitogens and cell adhesion,” Molecular and Cellular Biology, vol. 16, no. 12, pp. 6887–6899, 1996. View at Google Scholar · View at Scopus
  42. A. Kharitonenkov, Z. Chen, I. Sures, H. Wang, J. Schilling, and A. Ullrich, “A family of proteins that inhibit signalling through tyrosine kinase receptors,” Nature, vol. 386, no. 6621, pp. 181–186, 1997. View at Publisher · View at Google Scholar · View at Scopus
  43. C. Saginario, H. Sterling, C. Beckers et al., “MFR, a putative receptor mediating the fusion of macrophages,” Molecular and Cellular Biology, vol. 18, no. 11, pp. 6213–6223, 1998. View at Google Scholar · View at Scopus
  44. S. I. Sano, H. Ohnishi, A. Omori, J. Hasegawa, and M. Kubota, “BIT, an immune antigen receptor-like molecule in the brain,” FEBS Letters, vol. 411, no. 2-3, pp. 327–334, 1997. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Veillette, E. Thibaudeaut, and S. Latour, “High expression of inhibitory receptor SHPS-1 and its association with protein-tyrosine phosphatase SHP-1 in macrophages,” Journal of Biological Chemistry, vol. 273, no. 35, pp. 22719–22728, 1998. View at Publisher · View at Google Scholar · View at Scopus
  46. J. F. Timms, K. D. Swanson, A. Marie-Gardine et al., “SHPS-1 is a scaffold for assembling distinct adhesion-regulated multi-protein complexes in macrophages,” Current Biology, vol. 9, no. 16, pp. 927–930, 1999. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Seiffert, P. Brossart, C. Cant et al., “Signal-regulatory protein α (SIRPα) but not SIRPβ is involved in T-cell activation, binds to CD47 with high affinity, and is expressed on immature CD34+CD38 hematopoietic cells,” Blood, vol. 97, no. 9, pp. 2741–2749, 2001. View at Publisher · View at Google Scholar · View at Scopus
  48. Y. Ichigotani, S. Matsuda, K. Machida et al., “Molecular cloning of a novel human gene (SIRP-B2) which encodes a new member of the SIRP/SHPS-1 protein family,” Journal of Human Genetics, vol. 45, no. 6, pp. 378–382, 2000. View at Google Scholar · View at Scopus
  49. J. Dietrich, M. Cella, M. Seiffert, H. J. Bühring, and M. Colonna, “Cutting edge: signal-regulatory protein β1 is a DAP12-associated activating receptor expressed in myeloid cells,” Journal of Immunology, vol. 164, no. 1, pp. 9–12, 2000. View at Google Scholar · View at Scopus
  50. E. Tomasello, C. Cant, H. J. Buhring et al., “Association of signal-regulatory proteins β with KARAP/DAP-12,” European Journal of Immunology, vol. 30, pp. 2147–2156, 2000. View at Google Scholar
  51. A. N. Barclay and M. H. Brown, “The SIRP family of receptors and immune regulation,” Nature Reviews Immunology, vol. 6, no. 6, pp. 457–464, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. P. Jiang, C. F. Lagenaur, and V. Narayanan, “Integrin-associated protein is a ligand for the P84 neural adhesion molecule,” Journal of Biological Chemistry, vol. 274, no. 2, pp. 559–562, 1999. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Seiffert, C. Cant, Z. Chen et al., “Human signal-regulatory protein is expressed on normal, but not on subsets of leukemic myeloid cells and mediates cellular adhesion involving its counterreceptor CD47,” Blood, vol. 94, no. 11, pp. 3633–3643, 1999. View at Google Scholar · View at Scopus
  54. G. Brooke, J. D. Holbrook, M. H. Brown, and A. N. Barclay, “Human lymphocytes interact directly with CD47 through a novel member of the signal regulatory protein (SIRP) family,” Journal of Immunology, vol. 173, no. 4, pp. 2562–2570, 2004. View at Google Scholar · View at Scopus
  55. L. Piccio, W. Vermi, K. S. Boles et al., “Adhesion of human T cells to antigen-presenting cells through SIRPβ2-CD47 interaction costimulates T-cell proliferation,” Blood, vol. 105, no. 6, pp. 2421–2427, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. N. Legrand, N. D. Huntington, M. Nagasawa et al., “Functional CD47/signal regulatory protein alpha (SIRPα) interaction is required for optimal human T- and natural killer- (NK) cell homeostasis in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, pp. 13224–13229, 2011. View at Google Scholar
  57. M. Sato-Hashimoto, Y. Saito, H. Ohnishi et al., “Signal regulatory protein α regulates the homeostasis of T lymphocytes in the spleen,” The Journal of Immunology, vol. 187, pp. 291–297, 2011. View at Publisher · View at Google Scholar
  58. S. Latour, H. Tanaka, C. Demeure et al., “Bidirectional negative regulation of human T and dendritic cells by CD47 and its cognate receptor signal-regulator protein-α: down-regulation of IL-12 responsiveness and inhibition of dendritic cell activation,” Journal of Immunology, vol. 167, no. 5, pp. 2547–2554, 2001. View at Google Scholar · View at Scopus
  59. S. Hagnerud, P. P. Manna, M. Cella et al., “Deficit of CD47 results in a defect of marginal zone dendritic cells, blunted immune response to particulate antigen and impairment of skin dendritic cell migration,” Journal of Immunology, vol. 176, no. 10, pp. 5772–5778, 2006. View at Google Scholar · View at Scopus
  60. Y. Saito, H. Iwamura, T. Kaneko et al., “Regulation by SIRPα of dendritic cell homeostasis in lymphoid tissues,” Blood, vol. 116, no. 18, pp. 3517–3525, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. V. Q. Van, S. Lesage, S. Bouguermouh et al., “Expression of the self-marker CD47 on dendritic cells governs their trafficking to secondary lymphoid organs,” EMBO Journal, vol. 25, no. 23, pp. 5560–5568, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. H. E. De Vries, J. J. A. Hendriks, H. Honing et al., “Signal-regulatory protein α-CD47 interactions are required for the transmigration of monocytes across cerebral endothelium,” Journal of Immunology, vol. 168, no. 11, pp. 5832–5839, 2002. View at Google Scholar · View at Scopus
  63. Y. Liu, H. J. Bühring, K. Zen et al., “Signal regulatory protein (SIRPα), a cellular ligand for CD47, regulates neutrophil transmigration,” Journal of Biological Chemistry, vol. 277, no. 12, pp. 10028–10036, 2002. View at Publisher · View at Google Scholar · View at Scopus
  64. A. N. Barclay, “Signal regulatory protein alpha (SIRPα)/CD47 interaction and function,” Current Opinion in Immunology, vol. 21, no. 1, pp. 47–52, 2009. View at Google Scholar
  65. T. Matozaki, Y. Murata, H. Okazawa, and H. Ohnishi, “Functions and molecular mechanisms of the CD47-SIRPα signalling pathway,” Trends in Cell Biology, vol. 19, no. 2, pp. 72–80, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. P. Lundberg, C. Koskinen, P. A. Baldock et al., “Osteoclast formation is strongly reduced both in vivo and in vitro in the absence of CD47/SIRPα-interaction,” Biochemical and Biophysical Research Communications, vol. 352, no. 2, pp. 444–448, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. L. A. Maile, V. E. DeMambro, C. Wai et al., “An essential role for the association of CD47 to SHPS-1 in skeletal remodeling,” Journal of Bone and Mineral Research, vol. 26, no. 9, pp. 2068–2081, 2011. View at Publisher · View at Google Scholar
  68. P. A. Oldenborg, A. Zheleznyak, Y. F. Fang, C. F. Lagenaur, H. D. Gresham, and F. P. Lindberg, “Role of CD47 as a marker of self on red blood cells,” Science, vol. 288, no. 5473, pp. 2051–2054, 2000. View at Publisher · View at Google Scholar · View at Scopus
  69. S. Subramanian, R. Parthasarathy, S. Sen, E. T. Boder, and D. E. Discher, “Species- and cell type-specific interactions between CD47 and human SIRPα,” Blood, vol. 107, no. 6, pp. 2548–2556, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. S. Subramanian, E. T. Boder, and D. E. Discher, “Phylogenetic divergence in human SIRPalpha-CD47 interactions reveals locus of species-specificity: implications for the binding site,” Journal of Biological Chemistry, vol. 282, no. 3, pp. 1805–1818, 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. T. Ogura, T. Noguchi, R. Murai-Takebe, T. Hosooka, N. Honma, and M. Kasuga, “Resistance of B16 melanoma cells to CD47-induced negative regulation of motility as a result of aberrant N-glycosylation of SHPS-1,” Journal of Biological Chemistry, vol. 279, no. 14, pp. 13711–13720, 2004. View at Publisher · View at Google Scholar · View at Scopus
  72. V. Mateo, L. Lagneaux, D. Bron et al., “CD47 ligation induces caspase-independent cell death in chronic lymphocytic leukemia,” Nature Medicine, vol. 5, no. 11, pp. 1277–1284, 1999. View at Publisher · View at Google Scholar · View at Scopus
  73. R. D. Pettersen, K. Hestdal, M. K. Olafsen, S. O. Lie, and F. P. Lindberg, “CD47 signals T cell death,” Journal of Immunology, vol. 162, no. 12, pp. 7031–7040, 1999. View at Google Scholar · View at Scopus
  74. P. P. Manna and W. A. Frazier, “The mechanism of CD47-dependent killing of T cells: heterotrimeric Gi-dependent inhibition of protein kinase A,” Journal of Immunology, vol. 170, no. 7, pp. 3544–3553, 2003. View at Google Scholar · View at Scopus
  75. P. P. Manna and W. A. Frazier, “CD47 mediates killing of breast tumor cells via Gi-dependent inhibition of protein kinase A,” Cancer Research, vol. 64, no. 3, pp. 1026–1036, 2004. View at Publisher · View at Google Scholar · View at Scopus
  76. S. Uno, Y. Kinoshita, Y. Azuma et al., “Antitumor activity of a monoclonal antibody against CD47 in xenograft models of human leukemia,” Oncology Reports, vol. 17, no. 5, pp. 1189–1194, 2007. View at Google Scholar · View at Scopus
  77. V. Mateo, E. J. Brown, G. Biron et al., “Mechanisms of CD47-induced caspase-independent cell death in normal and leukemic cells: link between phosphatidylserine exposure and cytoskeleton organization,” Blood, vol. 100, no. 8, pp. 2882–2890, 2002. View at Publisher · View at Google Scholar · View at Scopus
  78. L. Lamy, M. Ticchioni, A. K. Rouquette-Jazdanian et al., “CD47 and the 19 kDA interacting protein-3 (BNIP3) in T cell apoptosis,” Journal of Biological Chemistry, vol. 278, no. 26, pp. 23915–23921, 2003. View at Publisher · View at Google Scholar · View at Scopus
  79. L. Lamy, A. Foussat, E. J. Brown, P. Bornstein, M. Ticchioni, and A. Bernard, “Interactions between CD47 and thrombospondin reduce inflammation,” Journal of Immunology, vol. 178, no. 9, pp. 5930–5939, 2007. View at Google Scholar · View at Scopus
  80. M. P. Blundell, A. Worth, G. Bouma, and A. J. Thrasher, “The Wiskott-Aldrich syndrome: the actin cytoskeleton and immune cell function,” Disease Markers, vol. 29, no. 3-4, pp. 157–175, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. G. Roué, N. Bitton, V. J. Yuste et al., “Mitochondrial dysfunction in CD47-mediated caspase-independent cell death: ros production in the absence of cytochrome c and AIF release,” Biochimie, vol. 85, no. 8, pp. 741–746, 2003. View at Publisher · View at Google Scholar · View at Scopus
  82. M. Sagawa, T. Shimizu, N. Fukushima et al., “A new disulfide-linked dimer of a single-chain antibody fragment against human CD47 induces apoptosis in lymphoid malignant cells via the hypoxia inducible factor-1α pathway,” Cancer Science, vol. 102, no. 6, pp. 1208–1215, 2011. View at Publisher · View at Google Scholar · View at Scopus
  83. P. P. Manna, J. Dimitry, P. A. Oldenborg, and W. A. Frazier, “CD47 augments fas/CD95-mediated apoptosis,” Journal of Biological Chemistry, vol. 280, no. 33, pp. 29637–29644, 2005. View at Publisher · View at Google Scholar · View at Scopus
  84. Y. Kikuchi, S. Uno, Y. Yoshimura et al., “A bivalent single-chain Fv fragment against CD47 induces apoptosis for leukemic cells,” Biochemical and Biophysical Research Communications, vol. 315, no. 4, pp. 912–918, 2004. View at Publisher · View at Google Scholar · View at Scopus
  85. Y. Kikuchi, S. Uno, Y. Kinoshita et al., “Apoptosis inducing bivalent single-chain antibody fragments against CD47 showed antitumor potency for multiple myeloma,” Leukemia Research, vol. 29, no. 4, pp. 445–450, 2005. View at Publisher · View at Google Scholar · View at Scopus
  86. U. Johansson, K. Higginbottom, and M. Londei, “CD47 ligation induces a rapid caspase-independent apoptosis-like cell death in human monocytes and dendritic cells,” Scandinavian Journal of Immunology, vol. 59, no. 1, pp. 40–49, 2004. View at Publisher · View at Google Scholar · View at Scopus
  87. H. Koshimizu, T. Araki, S. Takai et al., “Expression of CD47/integrin-associated protein induces death of cultured cerebral cortical neurons,” Journal of Neurochemistry, vol. 82, no. 2, pp. 249–257, 2002. View at Publisher · View at Google Scholar · View at Scopus
  88. M. A. Freyberg, D. Kaiser, R. Graf, P. Vischer, and P. Friedl, “Integrin-associated protein and thrombospondin-1 as endothelial mechanosensitive death mediators,” Biochemical and Biophysical Research Communications, vol. 271, no. 3, pp. 584–588, 2000. View at Publisher · View at Google Scholar · View at Scopus
  89. M. A. Freyberg, D. Kaiser, R. Graf, J. Buttenbender, and P. Friedl, “Proatherogenic flow conditions initiate endothelial apoptosis via thrombospondin-1 and the integrin-associated protein,” Biochemical and Biophysical Research Communications, vol. 286, no. 1, pp. 141–149, 2001. View at Publisher · View at Google Scholar · View at Scopus
  90. R. Graf, M. Freyberg, D. Kaiser, and P. Friedl, “Mechanosensitive induction of apoptosis in fibroblasts is regulated by thrombospondin-1 and integrin associated protein (CD47),” Apoptosis, vol. 7, no. 6, pp. 493–498, 2002. View at Publisher · View at Google Scholar · View at Scopus
  91. A. Saumet, M. B. Slimane, M. Lanotte, J. Lawler, and V. Dubernard, “Type 3 repeat/C-terminal domain of thrombospondin-1 triggers caspase-independent cell death through CD47/αvβ3 in promyelocytic leukemia NB4 cells,” Blood, vol. 106, no. 2, pp. 658–667, 2005. View at Publisher · View at Google Scholar · View at Scopus
  92. G. M. Rath, C. Schneider, S. Dedieu et al., “Thrombospondin-1 C-terminal-derived peptide protects thyroid cells from ceramide-induced apoptosis through the adenylyl cyclase pathway,” International Journal of Biochemistry and Cell Biology, vol. 38, no. 12, pp. 2219–2228, 2006. View at Publisher · View at Google Scholar · View at Scopus
  93. G. M. Rath, C. Schneider, S. Dedieu et al., “The C-terminal CD47/IAP-binding domain of thrombospondin-1 prevents camptothecin- and doxorubicin-induced apoptosis in human thyroid carcinoma cells,” Biochimica et Biophysica Acta, vol. 1763, no. 10, pp. 1125–1134, 2006. View at Publisher · View at Google Scholar · View at Scopus
  94. G. D. Grossfeld, D. A. Ginsberg, J. P. Stein et al., “Thrombospondin-1 expression in bladder cancer: association with p53 alterations, tumor angiogenesis, and tumor progression,” Journal of the National Cancer Institute, vol. 89, no. 3, pp. 219–227, 1997. View at Google Scholar · View at Scopus
  95. I. Sargiannidou, J. Zhou, and G. P. Tuszynski, “The role of thrombospondin-1 in tumor progression,” Experimental Biology and Medicine, vol. 226, no. 8, pp. 726–733, 2001. View at Google Scholar · View at Scopus
  96. C. D. Sutton, K. O'Byrne, J. C. Goddard et al., “Expression of thrombospondin-1 in resected colorectal liver metastases predicts poor prognosis,” Clinical Cancer Research, vol. 11, no. 18, pp. 6567–6573, 2005. View at Publisher · View at Google Scholar · View at Scopus
  97. N. Avent, P. A. Judson, S. F. Parsons et al., “Monoclonal antibodies that recognize different membrane proteins that are deficient in Rhnull human erythrocytes. One group of antibodies reacts with a variety of cells and tissues whereas the other group is erythroid-specific,” Biochemical Journal, vol. 251, no. 2, pp. 499–505, 1988. View at Google Scholar · View at Scopus
  98. J. P. Cartron, “RH blood group system and molecular basis of Rh-deficiency,” Best Practice & Research Clinical Haematology, vol. 12, no. 4, pp. 655–689, 1999. View at Publisher · View at Google Scholar
  99. A. C. Rybicki, R. S. Schwartz, E. J. Hustedt, and C. E. Cobb, “Increased rotational mobility and extractability of band 3 from protein 4.2-deficient erythrocyte membranes: evidence of a role for protein 4.2 in strengthening the band 3-cytoskeleton linkage,” Blood, vol. 88, no. 7, pp. 2745–2753, 1996. View at Google Scholar · View at Scopus
  100. M. J. A. Tanner, “Band 3 anion exchanger and its involvement in erythrocyte and kidney disorders,” Current Opinion in Hematology, vol. 9, no. 2, pp. 133–139, 2002. View at Publisher · View at Google Scholar · View at Scopus
  101. L. J. Bruce, R. Beckmann, M. L. Ribeiro et al., “A band 3-based macrocomplex of integral and peripheral proteins in the RBC membrane,” Blood, vol. 101, no. 10, pp. 4180–4188, 2003. View at Publisher · View at Google Scholar · View at Scopus
  102. P. B. Booth, S. Serjeantson, D. G. Woodfield, and D. Amato, “Selective depression of blood group antigens associated with hereditary ovalocytosis among Melanesians,” Vox Sanguinis, vol. 32, no. 2, pp. 99–110, 1977. View at Google Scholar · View at Scopus
  103. L. J. Bruce, S. Ghosh, M. J. King et al., “Absence of CD47 in protein 4.2-deficient hereditary spherocytosis in man: an interaction between the Rh complex and the band 3 complex,” Blood, vol. 100, no. 5, pp. 1878–1885, 2002. View at Publisher · View at Google Scholar · View at Scopus
  104. K. N. Dahl, C. M. Westhoff, and D. E. Discher, “Fractional attachment of CD47 (IAP) to the erythrocyte cytoskeleton and visual colocalization with Rh protein complexes,” Blood, vol. 101, no. 3, pp. 1194–1199, 2003. View at Publisher · View at Google Scholar · View at Scopus
  105. I. Mouro-Chanteloup, M. Johansen, E. J. Brown, and J. P. C. Y. Cartron, “Normal red cell membrane expression of Rh and RhAG polypeptides in CD47-deficient mice,” Vox Sanguinis, vol. 78, article P030, 2000. View at Google Scholar
  106. I. Mouro-Chanteloup, J. Delaunay, P. Gane et al., “Evidence that the red cell skeleton protein 4.2 interacts with the Rh membrane complex member CD47,” Blood, vol. 101, no. 1, pp. 338–344, 2003. View at Publisher · View at Google Scholar · View at Scopus
  107. A. M. Anniss and R. L. Sparrow, “Expression of CD47 (integrin-associated protein) decreases on red blood cells during storage,” Transfusion and Apheresis Science, vol. 27, no. 3, pp. 233–238, 2002. View at Publisher · View at Google Scholar · View at Scopus
  108. N. Kamel, F. Goubran, N. Ramsis, and A. S. Ahmed, “Effects of storage time and leucocyte burden of packed and buffy-coat depleted red blood cell units on red cell storage lesion,” Blood Transfusion, vol. 8, no. 4, pp. 260–266, 2010. View at Publisher · View at Google Scholar · View at Scopus
  109. A. Stewart, S. Urbaniak, M. Turner, and H. Bessos, “The application of a new quantitative assay for the monitoring of integrin-associated protein CD47 on red blood cells during storage and comparison with the expression of CD47 and phosphatidylserine with flow cytometry,” Transfusion, vol. 45, no. 9, pp. 1496–1503, 2005. View at Publisher · View at Google Scholar · View at Scopus
  110. C. R. Gilson, T. S. Kraus, E. A. Hod et al., “A novel mouse model of red blood cell storage and posttransfusion in vivo survival,” Transfusion, vol. 49, no. 8, pp. 1546–1553, 2009. View at Publisher · View at Google Scholar · View at Scopus
  111. P. Burger, P. Hilarius-Stokman, D. de Korte, T. K. van den Berg, and R. van Bruggen, “CD47 functions as a molecular switch for erythrocyte phagocytosis,” Blood, vol. 119, pp. 5512–5521, 2012. View at Publisher · View at Google Scholar
  112. J. L. Holovati, K. A. Wong, J. M. Webster, and J. P. Acker, “The effects of cryopreservation on red blood cell microvesiculation, phosphatidylserine externalization, and CD47 expression,” Transfusion, vol. 48, no. 8, pp. 1658–1668, 2008. View at Publisher · View at Google Scholar · View at Scopus
  113. O. Rubin, G. Canelli, J. Delobel, N. Lion, and J. D. Tissot, “Red blood cell microparticles: clinical relevance,” Transfusion Medicine and Hemotherapy, vol. 39, pp. 342–347, 2012. View at Publisher · View at Google Scholar
  114. A. G. Kriebardis, M. H. Antonelou, K. E. Stamoulis, E. Economou-Petersen, L. H. Margaritis, and I. S. Papassideri, “RBC-derived vesicles during storage: ultrastructure, protein composition, oxidation, and signaling components,” Transfusion, vol. 48, no. 9, pp. 1943–1953, 2008. View at Publisher · View at Google Scholar · View at Scopus
  115. L. Fossati-Jimack, S. Azeredo Da Silveira, T. Moll et al., “Selective increase of autoimmune epitope expression on aged erythrocytes in mice: implications in anti-erythrocyte autoimmune responses,” Journal of Autoimmunity, vol. 18, no. 1, pp. 17–25, 2002. View at Publisher · View at Google Scholar · View at Scopus
  116. R. K. Saxena, N. Bhardwaj, S. Sachar, N. Puri, and S. Khandelwal, “A double in vivo biotinylation technique for objective assessment of aging and clearance of mouse erythrocytes in blood circulation,” Transfusion Medicine and Hemotherapy, vol. 39, pp. 335–341, 2012. View at Publisher · View at Google Scholar
  117. S. Khandelwal, N. Van Rooijen, and R. K. Saxena, “Reduced expression of CD47 during murine red blood cell (RBC) senescence and its role in RBC clearance from the circulation,” Transfusion, vol. 47, no. 9, pp. 1725–1732, 2007. View at Publisher · View at Google Scholar · View at Scopus
  118. S. K. Ballas and N. Mohandas, “Pathophysiology of vaso-occlusion,” Hematology/Oncology Clinics of North America, vol. 10, no. 6, pp. 1221–1239, 1996. View at Google Scholar · View at Scopus
  119. S. K. Ballas and N. Mohandas, “Sickle red cell microrheology and sickle blood rheology,” Microcirculation, vol. 11, no. 2, pp. 209–225, 2004. View at Publisher · View at Google Scholar · View at Scopus
  120. J. E. Brittain, K. J. Mlinar, C. S. Anderson, E. P. Orringer, and L. V. Parise, “Integrin-associated protein is an adhesion receptor on sickle red blood cells for immobilized thrombospondin,” Blood, vol. 97, no. 7, pp. 2159–2164, 2001. View at Publisher · View at Google Scholar · View at Scopus
  121. J. E. Brittain, K. J. Mlinar, C. S. Anderson, E. P. Orringer, and L. V. Parise, “Activation of sickle red blood cell adhesion via integrin-associated protein/CD47-induced signal transduction,” Journal of Clinical Investigation, vol. 107, no. 12, pp. 1555–1562, 2001. View at Google Scholar · View at Scopus
  122. G. A. Grabowski, “Phenotype, diagnosis, and treatment of Gaucher's disease,” The Lancet, vol. 372, no. 9645, pp. 1263–1271, 2008. View at Publisher · View at Google Scholar · View at Scopus
  123. D. Bratosin, J. P. Tissier, H. Lapillonne et al., “A cytometric study of the red blood cells in gaucher disease reveals their abnormal shape that may be involved in increased erythrophagocytosis,” Cytometry Part B, vol. 80, no. 1, pp. 28–37, 2011. View at Publisher · View at Google Scholar · View at Scopus
  124. H. Jiang and L. Chess, “How the immune system achieves self-nonself discrimination during adaptive immunity,” Advances in Immunology, vol. 102, pp. 95–133, 2009. View at Publisher · View at Google Scholar · View at Scopus
  125. C. A. Janeway and R. Medzhitov, “Innate immune recognition,” Annual Review of Immunology, vol. 20, pp. 197–216, 2002. View at Publisher · View at Google Scholar · View at Scopus
  126. P. F. Zipfel and C. Skerka, “Complement regulators and inhibitory proteins,” Nature Reviews Immunology, vol. 9, no. 10, pp. 729–740, 2009. View at Publisher · View at Google Scholar · View at Scopus
  127. K. Kärre, H. G. Ljunggren, G. Piontek, and R. Kiessling, “Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy,” Nature, vol. 319, no. 6055, pp. 675–678, 1986. View at Google Scholar · View at Scopus
  128. L. L. Lanier, “NK cell recognition,” Annual Review of Immunology, vol. 23, pp. 225–274, 2004. View at Google Scholar
  129. V. Kumar and M. E. McNerney, “A new self: MHC-class-I-independent natural-killer-cell self-tolerance,” Nature Reviews Immunology, vol. 5, no. 5, pp. 363–374, 2005. View at Publisher · View at Google Scholar · View at Scopus
  130. T. A. M. Steevels and L. Meyaard, “Immune inhibitory receptors: essential regulators of phagocyte function,” European Journal of Immunology, vol. 41, no. 3, pp. 575–587, 2011. View at Publisher · View at Google Scholar · View at Scopus
  131. J. V. Ravetch and L. L. Lanier, “Immune inhibitory receptors,” Science, vol. 290, no. 5489, pp. 84–89, 2000. View at Publisher · View at Google Scholar · View at Scopus
  132. H. Liénard, P. Bruhns, O. Malbec, W. H. Fridman, and M. Daëron, “Signal regulatory proteins negatively regulate immunoreceptor-dependent cell activation,” Journal of Biological Chemistry, vol. 274, no. 45, pp. 32493–32499, 1999. View at Publisher · View at Google Scholar · View at Scopus
  133. N. K. Tonks and B. G. Neel, “From form to function: signaling by protein tyrosine phosphatases,” Cell, vol. 87, no. 3, pp. 365–368, 1996. View at Publisher · View at Google Scholar · View at Scopus
  134. B. R. Blazar, F. P. Lindberg, E. Ingulli et al., “CD47 (Integrin-associated Protein) engagement of dendritic cell and macrophage counterreceptors is required to prevent the clearance of donor lymphohematopoietic cells,” Journal of Experimental Medicine, vol. 194, no. 4, pp. 541–549, 2001. View at Publisher · View at Google Scholar · View at Scopus
  135. J. W. Goodman and L. H. Smith, “Erythrocyte life span in normal mice and in radiation bone marrow chimeras,” American Journal of Physiology, vol. 200, pp. 764–770, 1961. View at Google Scholar
  136. J. Horky, J. Vacha, and V. Znojil, “Comparison of life span of erythrocytes in some inbred strains of mouse using 14C-labelled glycine,” Physiologia Bohemoslovaca, vol. 27, no. 3, pp. 209–217, 1978. View at Google Scholar · View at Scopus
  137. N. Van Rooijen and A. Sanders, “Liposome mediated depletion of macropbages: mechanism of action, preparation of liposomes and applications,” Journal of Immunological Methods, vol. 174, no. 1-2, pp. 83–93, 1994. View at Google Scholar · View at Scopus
  138. T. Ishikawa-Sekigami, Y. Kaneko, H. Okazawa et al., “SHPS-1 promotes the survival of circulating erythrocytes through inhibition of phagocytosis by splenic macrophages,” Blood, vol. 107, no. 1, pp. 341–348, 2006. View at Publisher · View at Google Scholar · View at Scopus
  139. M. Olsson, P. Bruhns, W. A. Frazier, J. V. Ravetch, and P. A. Oldenborg, “Platelet homeostasis is regulated by platelet expression of CD47 under normal conditions and in passive immune thrombocytopenia,” Blood, vol. 105, no. 9, pp. 3577–3582, 2005. View at Publisher · View at Google Scholar · View at Scopus
  140. T. Yamao, T. Noguchi, U. Takeuchi et al., “Negative regulation of platelet clearance and of the macrophage phagocytic response by the transmembrane glycoprotein SHPS-1,” Journal of Biological Chemistry, vol. 277, no. 42, pp. 39833–39839, 2002. View at Publisher · View at Google Scholar · View at Scopus
  141. S. J. Gardai, K. A. McPhillips, S. C. Frasch et al., “Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte,” Cell, vol. 123, no. 2, pp. 321–334, 2005. View at Publisher · View at Google Scholar · View at Scopus
  142. A. Nilsson, L. Vesterlund, and P. A. Oldenborg, “Macrophage expression of LRP1, a receptor for apoptotic cells and unopsonized erythrocytes, can be regulated by glucocorticoids,” Biochemical and Biophysical Research Communications, vol. 417, no. 4, pp. 1304–1309, 2012. View at Publisher · View at Google Scholar
  143. A. Nilsson and P. A. Oldenborg, “CD47 promotes both phosphatidylserine-independent and phosphatidylserine-dependent phagocytosis of apoptotic murine thymocytes by non-activated macrophages,” Biochemical and Biophysical Research Communications, vol. 387, no. 1, pp. 58–63, 2009. View at Publisher · View at Google Scholar · View at Scopus
  144. H. Okazawa, S. I. Motegi, N. Ohyama et al., “Negative regulation of phagocytosis in macrophages by the CD47-SHPS-1 system,” Journal of Immunology, vol. 174, no. 4, pp. 2004–2011, 2005. View at Google Scholar · View at Scopus
  145. P. A. Oldenborg, H. D. Gresham, and F. P. Lindberg, “CD47-signal regulatory protein α (SIRPα) regulates Fcγ and complement receptor-mediated phagocytosis,” Journal of Experimental Medicine, vol. 193, no. 7, pp. 855–861, 2001. View at Publisher · View at Google Scholar · View at Scopus
  146. P. A. Oldenborg, H. D. Gresham, Y. Chen, S. Izui, and F. P. Lindberg, “Lethal autoimmune hemolytic anemia in CD47-deficient nonobese diabetic (NOD) mice,” Blood, vol. 99, no. 10, pp. 3500–3504, 2002. View at Publisher · View at Google Scholar · View at Scopus
  147. M. Kozlowski, I. Mlinaric-Rascan, G. S. Feng, R. Shen, T. Pawson, and K. A. Siminovitch, “Expression and catalytic activity of the tyrosine phosphatase PTP1C is severely impaired in motheaten and viable motheaten mice,” Journal of Experimental Medicine, vol. 178, no. 6, pp. 2157–2163, 1993. View at Publisher · View at Google Scholar · View at Scopus
  148. L. D. Schultz, D. R. Coman, C. L. Bailey et al., ““Viable motheaten”, a new allele at the motheaten locus. I. Pathology,” American Journal of Pathology, vol. 116, no. 2, pp. 179–192, 1984. View at Google Scholar · View at Scopus
  149. L. D. Shultz, P. A. Schweitzer, T. V. Rajan et al., “Mutations at the murine motheaten locus are within the hematopoietic cell protein-tyrosine phosphatase (Hcph) gene,” Cell, vol. 73, no. 7, pp. 1445–1454, 1993. View at Publisher · View at Google Scholar · View at Scopus
  150. M. Olsson, A. Nilsson, and P. A. Oldenborg, “Dose-dependent inhibitory effect of CD47 in macrophage uptake of IgG-opsonized murine erythrocytes,” Biochemical and Biophysical Research Communications, vol. 352, no. 1, pp. 193–197, 2007. View at Publisher · View at Google Scholar · View at Scopus
  151. M. Gitik, S. Liraz-Zaltsman, P. A. Oldenborg, F. Reichert, and S. Rotshenker, “Myelin down-regulates myelin phagocytosis by microglia and macrophages through interactions between CD47 on myelin and SIRPα (signal regulatory protein-α) on phagocytes,” Journal of Neuroinflammation, vol. 8, article 24, 2011. View at Publisher · View at Google Scholar · View at Scopus
  152. G. E. Janka, “Hemophagocytic syndromes,” Blood Reviews, vol. 21, no. 5, pp. 245–253, 2007. View at Publisher · View at Google Scholar · View at Scopus
  153. T. Kuriyama, K. Takenaka, K. Kohno et al., “Engulfment of hematopoietic stem cells caused by down-regulation of CD47 is critical in the pathogenesis of hemophagocytic lymphohistiocytosis,” Blood, vol. 120, no. 19, pp. 4058–4067, 2012. View at Publisher · View at Google Scholar
  154. M. Olsson and P. A. Oldenborg, “CD47 on experimentally senescent murine RBCs inhibits phagocytosis following Fcγ receptor-mediated but not scavenger receptor-mediated recognition by macrophages,” Blood, vol. 112, no. 10, pp. 4259–4267, 2008. View at Publisher · View at Google Scholar · View at Scopus
  155. R. K. Tsai and D. E. Discher, “Inhibition of “self” engulfment through deactivation of myosin-II at the phagocytic synapse between human cells,” Journal of Cell Biology, vol. 180, no. 5, pp. 989–1003, 2008. View at Publisher · View at Google Scholar · View at Scopus
  156. A. H. Jonsson and W. M. Yokoyama, “Natural killer cell tolerance: licensing and other mechanisms,” Advances in Immunology, vol. 101, pp. 27–79, 2009. View at Publisher · View at Google Scholar · View at Scopus
  157. H. Wang, M. L. Madariaga, S. Wang, N. Van Rooijen, P. A. Oldenborg, and Y. G. Yang, “Lack of CD47 on nonhematopoietic cells induces split macrophage tolerance to CD47null cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 34, pp. 13744–13749, 2007. View at Publisher · View at Google Scholar · View at Scopus
  158. Y. G. Yang, “CD47 in xenograft rejection and tolerance induction: review article,” Xenotransplantation, vol. 17, no. 4, pp. 267–273, 2010. View at Publisher · View at Google Scholar · View at Scopus
  159. M. R. Elliott and K. S. Ravichandran, “Clearance of apoptotic cells: implications in health and disease,” Journal of Cell Biology, vol. 189, no. 7, pp. 1059–1070, 2010. View at Publisher · View at Google Scholar · View at Scopus
  160. S. J. Gardai, D. L. Bratton, C. A. Ogden, and P. M. Henson, “Recognition ligands on apoptotic cells: a perspective,” Journal of Leukocyte Biology, vol. 79, no. 5, pp. 896–903, 2006. View at Publisher · View at Google Scholar · View at Scopus
  161. K. S. Ravichandran and U. Lorenz, “Engulfment of apoptotic cells: signals for a good meal,” Nature Reviews Immunology, vol. 7, no. 12, pp. 964–974, 2007. View at Publisher · View at Google Scholar · View at Scopus
  162. K. S. Ravichandran, “Beginnings of a good apoptotic meal: the find-me and eat-me signaling pathways,” Immunity, vol. 35, no. 4, pp. 445–455, 2011. View at Publisher · View at Google Scholar
  163. R. Hanayama and S. Nagata, “Impaired involution of mammary glands in the absence of milk fat globule EGF factor 8,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 46, pp. 16886–16891, 2005. View at Publisher · View at Google Scholar · View at Scopus
  164. M. Sandahl, D. M. Hunter, K. E. Strunk, H. S. Earp, and R. S. Cook, “Epithelial cell-directed efferocytosis in the post-partum mammary gland is necessary for tissue homeostasis and future lactation,” BMC Developmental Biology, vol. 10, article 122, 2010. View at Publisher · View at Google Scholar · View at Scopus
  165. K. Tada, M. Tanaka, R. Hanayama et al., “Tethering of apoptotic cells to phagocytes through binding of CD47 to src homology 2 domain-bearing protein tyrosine phosphatase substrate-1,” Journal of Immunology, vol. 171, no. 11, pp. 5718–5726, 2003. View at Google Scholar · View at Scopus
  166. C. A. Ogden, A. DeCathelineau, P. R. Hoffmann et al., “C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells,” Journal of Experimental Medicine, vol. 194, no. 6, pp. 781–795, 2001. View at Publisher · View at Google Scholar · View at Scopus
  167. R. W. Vandivier, C. A. Ogden, V. A. Fadok et al., “Role of surfactant proteins A, D, and C1q in the clearance of apoptotic cells in vivo and in vitro: calreticulin and CD91 as a common collectin receptor complex,” Journal of Immunology, vol. 169, no. 7, pp. 3978–3986, 2002. View at Google Scholar · View at Scopus
  168. M. Löwenberg, C. Stahn, D. W. Hommes, and F. Buttgereit, “Novel insights into mechanisms of glucocorticoid action and the development of new glucocorticoid receptor ligands,” Steroids, vol. 73, no. 9-10, pp. 1025–1029, 2008. View at Publisher · View at Google Scholar · View at Scopus
  169. R. P. Schleimer, “An overview of glucocorticoid anti-inflammatory actions,” European Journal of Clinical Pharmacology, vol. 45, no. 1, pp. S3–S7, 1993. View at Publisher · View at Google Scholar · View at Scopus
  170. K. M. Giles, K. Ross, A. G. Rossi, N. A. Hotchin, C. Haslett, and I. Dransfield, “Glucocorticoid augmentation of macrophage capacity for phagocytosis of apoptotic cells is associated with reduced p130Cas expression, loss of paxillin/pyk2 phosphorylation, and high levels of active rac,” Journal of Immunology, vol. 167, no. 2, supplement 1, pp. 976–986, 2001. View at Google Scholar · View at Scopus
  171. Y. Liu, J. M. Cousin, J. Hughes et al., “Glucocorticoids promote nonphlogistic phagocytosis of apoptotic leukocytes,” Journal of Immunology, vol. 162, no. 6, pp. 3639–3646, 1999. View at Google Scholar · View at Scopus
  172. S. Jaiswal, C. H. M. Jamieson, W. W. Pang et al., “CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis,” Cell, vol. 138, no. 2, pp. 271–285, 2009. View at Publisher · View at Google Scholar · View at Scopus
  173. R. Majeti, M. P. Chao, A. A. Alizadeh et al., “CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells,” Cell, vol. 138, no. 2, pp. 286–299, 2009. View at Publisher · View at Google Scholar · View at Scopus
  174. S. B. Willingham, J. P. Volkmer, A. J. Gentles et al., “The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, pp. 6662–6667, 2012. View at Google Scholar
  175. A. P. A. Theocharides, L. Jin, P. Y. Cheng et al., “Disruption of SIRPα signaling in macrophages eliminates human acute myeloid leukemia stem cells in xenografts,” The Journal of Experimental Medicine, vol. 209, no. 10, pp. 1883–1899, 2012. View at Publisher · View at Google Scholar
  176. M. P. Chao, A. A. Alizadeh, C. Tang et al., “Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-hodgkin lymphoma,” Cell, vol. 142, no. 5, pp. 699–713, 2010. View at Publisher · View at Google Scholar · View at Scopus
  177. X. W. Zhao, E. M. van Beek, K. Schornagel et al., “CD47-signal regulatory protein-α (SIRPα) interactions form a barrier for antibody-mediated tumor cell destruction,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, pp. 18342–118347, 2011. View at Google Scholar
  178. Y. G. Yang and M. Sykes, “Xenotransplantation: current status and a perspective on the future,” Nature Reviews Immunology, vol. 7, no. 7, pp. 519–531, 2007. View at Publisher · View at Google Scholar · View at Scopus
  179. A. Karlsson-Parra, A. Ridderstad, A. C. Wallgren, E. Möller, H. G. Ljunggren, and O. Korsgren, “Xenograft rejection of porcine islet-like cell clusters in normal and natural killer cell-depleted mice,” Transplantation, vol. 61, no. 9, pp. 1313–1320, 1996. View at Publisher · View at Google Scholar · View at Scopus
  180. G. Wu, O. Korsgren, J. Zhang, Z. Song, N. Van Rooijen, and A. Tibell, “Pig islet xenograft rejection is markedly delayed in macrophage-depleted mice: a study in streptozotocin diabetic animals,” Xenotransplantation, vol. 7, no. 3, pp. 214–220, 2000. View at Publisher · View at Google Scholar · View at Scopus
  181. M. Abe, J. Cheng, J. Qi et al., “Elimination of porcine hemopoietic cells by macrophages in mice,” Journal of Immunology, vol. 168, no. 2, pp. 621–628, 2002. View at Google Scholar · View at Scopus
  182. H. Wang, J. Verhalen, M. L. Madariaga et al., “Attenuation of phagocytosis of xenogeneic cells by manipulating CD47,” Blood, vol. 109, no. 2, pp. 836–842, 2007. View at Publisher · View at Google Scholar · View at Scopus
  183. K. Ide, H. Wang, H. Tahara et al., “Role for CD47-SIRPα signaling in xenograft rejection by macrophages,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 12, pp. 5062–5066, 2007. View at Publisher · View at Google Scholar · View at Scopus
  184. X. Han, H. Sterling, Y. Chen et al., “CD47, a ligand for the macrophage fusion receptor, participates in macrophage multinucleation,” Journal of Biological Chemistry, vol. 275, no. 48, pp. 37984–37992, 2000. View at Publisher · View at Google Scholar · View at Scopus
  185. Ö. Uluçkan, S. N. Becker, H. Deng et al., “CD47 regulates bone mass and tumor metastasis to bone,” Cancer Research, vol. 69, no. 7, pp. 3196–3204, 2009. View at Publisher · View at Google Scholar · View at Scopus
  186. E. M. Van Beek, T. J. De Vries, L. Mulder et al., “Inhibitory regulation of osteoclast bone resorption by signal regulatory protein α,” FASEB Journal, vol. 23, no. 12, pp. 4081–4090, 2009. View at Publisher · View at Google Scholar · View at Scopus
  187. A. Vignery, “Osteoclasts and giant cells: macrophage-macrophage fusion mechanism,” International Journal of Experimental Pathology, vol. 81, no. 5, pp. 291–304, 2000. View at Publisher · View at Google Scholar · View at Scopus