Table of Contents
ISRN Psychiatry
Volume 2013, Article ID 620361, 8 pages
http://dx.doi.org/10.1155/2013/620361
Research Article

Chronic Phencyclidine Increases Synapsin-1 and Synaptic Adaptation Proteins in the Medial Prefrontal Cortex

1Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, P.O. Box 410, 405 30 Gothenburg, Sweden
2Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden

Received 12 November 2012; Accepted 13 January 2013

Academic Editors: D. J. Castle, C. Norra, G. Sani, and C. Toni

Copyright © 2013 Chris Pickering et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. W. Young, S. B. Powell, V. Risbrough, H. M. Marston, and M. A. Geyer, “Using the MATRICS to guide development of a preclinical cognitive test battery for research in schizophrenia,” Pharmacology and Therapeutics, vol. 122, no. 2, pp. 150–202, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. T. J. Bussey, A. Holmes, L. Lyon et al., “New translational assays for preclinical modelling of cognition in schizophrenia: the touchscreen testing method for mice and rats,” Neuropharmacology, vol. 62, no. 3, pp. 1191–1203, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. C. A. Tamminga, “Schizophrenia and glutamatergic transmission,” Critical Reviews in Neurobiology, vol. 12, no. 1-2, pp. 21–36, 1998. View at Google Scholar · View at Scopus
  4. A. Adell, L. Jimenez-Sanchez, X. Lopez-Gil, and T. Romon, “Is the acute NMDA receptor hypofunction a valid model of Schizophrenia?” Schizophrenia Bulletin, vol. 38, no. 1, pp. 9–14, 2011. View at Google Scholar
  5. J. D. Jentsch, A. Tran, D. Le, K. D. Youngren, and R. H. Roth, “Subchronic phencyclidine administration reduces mesoprefrontal dopaminev utilization and impairs prefrontal cortical-dependent cognition in the rat,” Neuropsychopharmacology, vol. 17, no. 2, pp. 92–99, 1997. View at Google Scholar · View at Scopus
  6. B. V. Broberg, R. Dias, B. Y. Glenthøj, and C. K. Olsen, “Evaluation of a neurodevelopmental model of schizophrenia-Early postnatal PCP treatment in attentional set-shifting,” Behavioural Brain Research, vol. 190, no. 1, pp. 160–163, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. M. S. Thomsen, D. Z. Christensen, H. H. Hansen, J. P. Redrobe, and J. D. Mikkelsen, “α7 Nicotinic acetylcholine receptor activation prevents behavioral and molecular changes induced by repeated phencyclidine treatment,” Neuropharmacology, vol. 56, no. 6-7, pp. 1001–1009, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Tanibuchi, Y. Fujita, M. Kohno et al., “Effects of quetiapine on phencyclidine-induced cognitive deficits in mice: a possible role of α1-adrenoceptors,” European Neuropsychopharmacology, vol. 19, no. 12, pp. 861–867, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. Z. Abdul-Monim, J. C. Neill, and G. P. Reynolds, “Sub-chronic psychotomimetic phencyclidine induces deficits in reversal learning and alterations in parvalbumin-immunoreactive expression in the rat,” Journal of Psychopharmacology, vol. 21, no. 2, pp. 198–205, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. S. M. Cochran, M. Kennedy, C. E. McKerchar, L. J. Steward, J. A. Pratt, and B. J. Morris, “Induction of metabolic hypofunction and neurochemical deficits after chronic intermittent exposure to phencyclidine: differential modulation by antipsychotic drugs,” Neuropsychopharmacology, vol. 28, no. 2, pp. 265–275, 2003. View at Google Scholar · View at Scopus
  11. C. Flores, X. Wen, C. Labelle-Dumais, and B. Kolb, “Chronic phencyclidine treatment increases dendritic spine density in prefrontal cortex and nucleus accumbens neurons,” Synapse, vol. 61, no. 12, pp. 978–984, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. J. A. English, K. Pennington, M. J. Dunn, and D. R. Cotter, “The neuroproteomics of schizophrenia,” Biological Psychiatry, vol. 69, no. 2, pp. 163–172, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Paxinos and C. Watson, Eds., The Rat Brain in Stereotaxic Coordinates, Academic Press, 2007.
  14. A. Alban, S. O. David, L. Bjorkesten et al., “A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard,” Proteomics, vol. 3, no. 1, pp. 36–44, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Shevchenko, M. Wilm, O. Vorm, and M. Mann, “Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels,” Analytical Chemistry, vol. 68, no. 5, pp. 850–858, 1996. View at Publisher · View at Google Scholar · View at Scopus
  16. E. Carlsohn, J. Nyström, H. Karlsson, A. M. Svennerholm, and C. L. Nilsson, “Characterization of the outer membrane protein profile from disease-related Helicobacter pylori isolates by subcellular fractionation and nano-LC FT-ICR MS analysis,” Journal of Proteome Research, vol. 5, no. 11, pp. 3197–3204, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. B. A. Dyck, K. J. Skoblenick, J. M. Castellano, K. Ki, N. Thomas, and R. K. Mishra, “Synapsin II knockout mice show sensorimotor gating and behavioural abnormalities similar to those in the phencyclidine-induced preclinical animal model of schizophrenia,” Schizophrenia Research, vol. 97, no. 1–3, pp. 292–293, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Mirnics, F. A. Middleton, A. Marquez, D. A. Lewis, and P. Levitt, “Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex,” Neuron, vol. 28, no. 1, pp. 53–67, 2000. View at Google Scholar · View at Scopus
  19. B. A. Dyck, M. G. R. Beyaert, M. A. Ferro, and R. K. Mishra, “Medial prefrontal cortical synapsin II knock-down induces behavioral abnormalities in the rat: examining synapsin II in the pathophysiology of schizophrenia,” Schizophrenia Research, vol. 130, no. 1–3, pp. 250–259, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. I. L. Bogen, J. L. Boulland, E. Mariussen et al., “Absence of synapsin I and II is accompanied by decreases in vesicular transport of specific neurotransmitters,” Journal of Neurochemistry, vol. 96, no. 5, pp. 1458–1466, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. F. Cesca, P. Baldelli, F. Valtorta, and F. Benfenati, “The synapsins: key actors of synapse function and plasticity,” Progress in Neurobiology, vol. 91, no. 4, pp. 313–348, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. F. Indraswari, P. T. H. Wong, E. Yap, Y. K. Ng, and S. T. Dheen, “Upregulation of Dpysl2 and Spna2 gene expression in the rat brain after ischemic stroke,” Neurochemistry International, vol. 55, no. 4, pp. 235–242, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Chen, W. P. Liao, Q. Lu, W. S. F. Wong, and P. T. H. Wong, “Upregulation of dihydropyrimidinase-related protein 2, spectrin α II chain, heat shock cognate protein 70 pseudogene 1 and tropomodulin 2 after focal cerebral ischemia in rats-A proteomics approach,” Neurochemistry International, vol. 50, no. 7-8, pp. 1078–1086, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Weitzdoerfer, M. Fountoulakis, and G. Lubec, “Aberrant expression of dihydropyrimidinase related proteins-2,-3 and -4 in fetal Down Syndrome brain,” Journal of Neural Transmission, no. 61, pp. 95–107, 2001. View at Google Scholar · View at Scopus
  25. G. Gille and H. Reichmann, “Iron-dependent functions of mitochondria—relation to neurodegeneration,” Journal of Neural Transmission, vol. 118, no. 3, pp. 349–359, 2011. View at Google Scholar
  26. F. M. Commichau and J. Stülke, “Trigger enzymes: bifunctional proteins active in metabolism and in controlling gene expression,” Molecular Microbiology, vol. 67, no. 4, pp. 692–702, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. G. S. Shadel, “Mitochondrial DNA, aconitase 'wraps' it up,” Trends in Biochemical Sciences, vol. 30, no. 6, pp. 294–296, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Hetman, A. Vashishta, and G. Rempala, “Neurotoxic mechanisms of DNA damage: focus on transcriptional inhibition,” Journal of Neurochemistry, vol. 114, no. 6, pp. 1537–1549, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Hashimoto, D. J. Kim, and J. C. Adams, “The roles of fascins in health and disease,” The Journal of Pathology, vol. 224, no. 3, pp. 289–300, 2011. View at Google Scholar
  30. J. H. Shin, F. Guedj, J. M. Delabar, and G. Lubec, “Dysregulation of growth factor receptor-bound protein 2 and fascin in hippocampus of mice polytransgenic for chromosome 21 structures,” Hippocampus, vol. 17, no. 12, pp. 1180–1192, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Perdiz, R. Mackeh, C. Poüs, and A. Baillet, “The ins and outs of tubulin acetylation: more than just a post-translational modification?” Cellular Signalling, vol. 23, no. 5, pp. 763–771, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. D. Martins-de-Souza, G. Maccarrone, T. Wobrock et al., “Proteome analysis of the thalamus and cerebrospinal fluid reveals glycolysis dysfunction and potential biomarkers candidates for schizophrenia,” Journal of Psychiatric Research, vol. 44, no. 16, pp. 1176–1189, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Nishioka, C. Vilariño-Güell, S. A. Cobb et al., “Genetic variation of the mitochondrial complex I subunit NDUFV2 and Parkinson's disease,” Parkinsonism and Related Disorders, vol. 16, no. 10, pp. 686–687, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. D. Ben-Shachar and R. Karry, “Neuroanatomical pattern of mithochondrial complex I pathology varies between schizoprenia, bipolar disorder and major depression,” PLoS ONE, vol. 3, no. 11, Article ID e3676, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. D. Ben-Shachar and D. Laifenfeld, “Mitochondria, synaptic plasticity, and schizophrenia,” International Review of Neurobiology, vol. 59, pp. 273–296, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. C. G. DeVry and S. Clarke, “Polymorphic forms of the protein L-isoaspartate (D-aspartate) O-methyltransferase involved in the repair of age-damaged proteins,” Journal of Human Genetics, vol. 44, no. 5, pp. 275–288, 1999. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Kosugi, T. Furuchi, M. Katane, M. Sekine, T. Shirasawa, and H. Homma, “Suppression of protein l-isoaspartyl (d-aspartyl) methyltransferase results in hyperactivation of EGF-stimulated MEK-ERK signaling in cultured mammalian cells,” Biochemical and Biophysical Research Communications, vol. 371, no. 1, pp. 22–27, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. N. de Graaf, M. J. G. van Helden, K. Textoris-Taube et al., “PA28 and the proteasome immunosubunits play a central and independent role in the production of MHC class I-binding peptides in vivo,” European Journal of Immunology, vol. 41, no. 4, pp. 926–935, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Li, S. R. Powell, and X. Wang, “Enhancement of proteasome function by PA28α overexpression protects against oxidative stress,” The FASEB Journal, vol. 25, no. 3, pp. 883–893, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. D. De Stefani, A. Bononi, A. Romagnoli et al., “VDAC1 selectively transfers apoptotic Ca2+ signals to mitochondria,” Cell Death & Differentiation, vol. 19, no. 2, pp. 267–273, 2011. View at Google Scholar
  41. W. J. Strittmatter and A. D. Roses, “Apolipoprotein E and Alzheimer disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 11, pp. 4725–4727, 1995. View at Publisher · View at Google Scholar · View at Scopus
  42. K. R. Bales, “Brain lipid metabolism, apolipoprotein E and the pathophysiology of Alzheimer's disease,” Neuropharmacology, vol. 59, no. 4-5, pp. 295–302, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. E. M. Wijsman, N. D. Pankratz, Y. Choi et al., “Genome-wide association of familial late-onset alzheimer's disease replicates BIN1 and CLU and nominates CUGBP2 in interaction with APOE,” PLoS Genetics, vol. 7, no. 2, Article ID e1001308, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. C. J. Proctor, P. J. Tangeman, and H. C. Ardley, “Modelling the role of UCH-L1 on protein aggregation in age-related neurodegeneration,” PLoS ONE, vol. 5, no. 10, Article ID e13175, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. F. I. Andersson, E. F. Werrell, L. McMorran et al., “The effect of Parkinson's-disease-associated mutations on the deubiquitinating enzyme UCH-L1,” Journal of Molecular Biology, vol. 407, no. 2, pp. 261–272, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Zabka, W. Leśniak, W. Prus, J. Kuźnicki, and A. Filipek, “Sgt1 has co-chaperone properties and is up-regulated by heat shock,” Biochemical and Biophysical Research Communications, vol. 370, no. 1, pp. 179–183, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Spiechowicz, H. G. Bernstein, H. Dobrowolny et al., “Density of Sgt1-immunopositive neurons is decreased in the cerebral cortex of Alzheimer's disease brain,” Neurochemistry International, vol. 49, no. 5, pp. 487–493, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. D. Zhang and D. R. Richardson, “Endoplasmic reticulum protein 29 (ERp29): an emerging role in cancer,” International Journal of Biochemistry and Cell Biology, vol. 43, no. 1, pp. 33–36, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. J. C. MacLeod, R. J. Sayer, J. M. Lucocq, and M. J. Hubbard, “ERp29, a general endoplasmic reticulum marker, is highly expressed throughout the brain,” Journal of Comparative Neurology, vol. 477, no. 1, pp. 29–42, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. C. Pickering, P. P. Chau, B. Soderpalm, and M. Ericson, “Ethanol and phencyclidine interact with respect to nucleus accumbens dopamine release: differential effects of administration order and pretreatment protocol,” Frontiers in Behavioral Neuroscience, vol. 4, article 32, 2010. View at Google Scholar
  51. J. Gotesson, M. Ericson, B. Soderpalm, and C. Pickering, “Repeated ethanol but not phencyclidine impairs spontaneous alternation behaviour in the Y-maze,” Basic & Clinical Pharmacology & Toxicology, vol. 110, no. 4, pp. 347–352, 2012. View at Google Scholar