Table of Contents
ISRN Robotics
Volume 2013 (2013), Article ID 630579, 17 pages
http://dx.doi.org/10.5402/2013/630579
Research Article

Classification of Clothing Using Midlevel Layers

Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, USA

Received 31 December 2012; Accepted 26 January 2013

Academic Editors: K. K. Ahn, L. Asplund, and R. Safaric

Copyright © 2013 Bryan Willimon et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Hata, T. Hiroyasu, J. Hayash, H. Hojoh, and T. Hamada, “Flexible handling robot system for cloth,” in Proceedings of the IEEE International Conference on Mechatronics and Automation (ICMA '09), pp. 49–54, August 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Yoshida, J. Hayashi, S. Hata, H. Hojoh, and T. Hamada, “Status estimation of cloth handling robot using force sensor,” in Proceedings of the IEEE International Symposium on Industrial Electronics (ISIE '09), pp. 339–343, July 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Salleh, H. Seki, Y. Kamiya, and M. Hikizu, “Tracing manipulation in clothes spreading by robot arms,” Journal of Robotics and Mechatronics, vol. 18, no. 5, pp. 564–571, 2006. View at Google Scholar
  4. Y. Kita and N. Kita, “A model-driven method of estimating the state of clothes for manipulating it,” in Proceedings of the 6th Workshop on Applications of Computer Vision, pp. 63–69, 2002.
  5. Y. Kita, F. Saito, and N. Kita, “A deformable model driven visual method for handling clothes,” in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 3889–3895, May 2004. View at Scopus
  6. Y. Kita, T. Ueshiba, E. Neo, and N. Kita, “A method for handling a specific part of clothing by dual arms,” in Proceedings of the Conference on Intelligent Robots and Systems (IROS '09), pp. 3403–3408, 2009.
  7. P. Gibbons, P. Culverhouse, and G. Bugmann, “Visual identification of grasp locations on clothing for a personal robot,” in Proceedings of the Conference Towards Autonomous Robotics Systems (TAROS '09), pp. 78–81, August 2009.
  8. H. Kobayashi, S. Hata, H. Hojoh, T. Hamada, and H. Kawai, “A study on handling system for cloth using 3-D vision sensor,” in Proceedings of the 34th Annual Conference of the IEEE Industrial Electronics Society (IECON '08), pp. 3403–3408, November 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. B. Willimon, S. Birchfield, and I. Walker, “Classification of clothing using interactive perception,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '11), pp. 1862–1868, 2011.
  10. M. Kaneko and M. Kakikura, “Planning strategy for unfolding task of clothes—isolation of clothes from washed mass,” in Proceedings of the 13th annual conference of the Robotics Society of Japan (RSJ '96), pp. 455–456, 1996.
  11. M. Kaneko and M. Kakikura, “Planning strategy for putting away laundry—isolating and unfolding task,” in Proceedings of the IEEE International Symposium on Assembly and Task Planning (ISATP '01), pp. 429–434, May 2001. View at Scopus
  12. F. Osawa, H. Seki, and Y. Kamiya, “Unfolding of massive laundry and classification types by dual manipulator,” Journal of Advanced Computational Intelligence and Intelligent Informatics, vol. 11, no. 5, pp. 457–463.
  13. Y. Kita, T. Ueshiba, E. S. Neo, and N. Kita, “Clothes state recognition using 3d observed data,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '09), pp. 1220–1225, May 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Cusumano-Towner, A. Singh, S. Miller, J. F. O’Brien, and P. Abbeel, “Bringing clothing into desired configurations with limited perception,” in Proceedings of the International Conference on Robotics and Automation, May 2011.
  15. B. Willimon, I. Walker, and S. Birchfield, “A new approach to clothing classification using mid-level layers,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '13), 2013.
  16. B. Willimon, S. Birchfield, and I. Walker, “Model for unfolding laundry using interactive perception,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '11), 2011.
  17. S. Miller, M. Fritz, T. Darrell, and P. Abbeel, “Parametrized shape models for clothing,” in Proceedings of the International Conference on Robotics and Automation, pp. 4861–4868, May 2011.
  18. D. Katz and O. Brock, “Manipulating articulated objects with interactive perception,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '08), pp. 272–277, May 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Kenney, T. Buckley, and O. Brock, “Interactive segmentation for manipulation in unstructured environments,” in Proceedings of the International Conference on Robotics and Automation (ICRA '09), pp. 1377–1382, 2009.
  20. P. Fitzpatrick, “First contact: an active vision approach to segmentation,” in Proceedings of the International Conference on Intelligent Robots and Systems (IROS '03), pp. 2161–2166, 2003.
  21. B. Willimon, S. Birchfield, and I. Walker, “Rigid and non-rigid classification using interactive perception,” in Proceedings of the 23rd IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '10), pp. 1728–1733, October 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. R. B. Willimon, Interactive perception for cluttered environments [M.S. thesis], Clemson University, 2009.
  23. C. C. Chang and C. J. Lin, LIBSVM: A Library for Support Vector Machines, 2001.
  24. H. M. Wallach, “Topic modeling: beyond bag-of-words,” in Proceedings of the 23rd International Conference on Machine Learning (ICML '06), pp. 977–984, June 2006. View at Scopus
  25. A. Ramisa, G. Alenyá, F. Moreno-Noguer, and C. Torras, “Using depth and appearance features for informed robot grasping of highly wrinkled clothes,” in Proceedings of the International Conference on Robotics and Automation, pp. 1703–1708, 2012.
  26. P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based image segmentation,” International Journal of Computer Vision, vol. 59, no. 2, pp. 167–181, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. J. F. Canny, “A computational approach to edge detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 8, no. 6, pp. 679–698, 1986. View at Google Scholar · View at Scopus
  28. K. Kimura, S. Kikuchi, and S. Yamasaki, “Accurate root length measurement by image analysis,” Plant and Soil, vol. 216, no. 1, pp. 117–127, 1999. View at Google Scholar
  29. R. B. Rusu, G. Bradski, R. Thibaux, and J. Hsu, “Fast 3D recognition and pose using the viewpoint feature histogram,” in Proceedings of the 23rd IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '10), pp. 2155–2162, October 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Rusu, N. Blodow, and M. Beetz, “Fast point feature histograms (FPFH) for 3D registration,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '09), Intelligent Autonomous Systems IAS, May 2009.
  32. A. Gidudu, G. Hulley, and T. Marwala, “Image classification using SVMs: one-against-one vs one-against-all,” in Proccedings of the 28th Asian Conference on Remote Sensing, 2007.
  33. J. Milgram, M. Cheriet, and R. Sabourin, “One against one or one against all: which one is better for handwriting recognition with SVMs?” in Proceedings of the 10th International Workshop on Frontiers in Handwriting Recognition, October 2006.
  34. R. Rifkin and A. Klautau, “In defense of one-vs-all classification,” Journal of Machine Learning Research, vol. 5, pp. 101–141, 2004. View at Google Scholar
  35. K. bo Duan and S. S. Keerthi, “Which is the best multiclass SVM method? an empirical study,” in Proceedings of the 6th International Workshop on Multiple Classifier Systems, pp. 278–285, 2005.
  36. P. A. Devijver and J. Kittler, Pattern Recognition: A Statistical Approach, Prentice Hall, London, UK, 1982.