Table of Contents
ISRN Zoology
Volume 2013, Article ID 635704, 9 pages
http://dx.doi.org/10.1155/2013/635704
Research Article

The Response of Gray Treefrogs to Anesthesia by Tricaine Methanesulfonate (TMS or MS-222)

1Department of Biological Sciences, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA
2Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108, USA

Received 30 June 2013; Accepted 1 October 2013

Academic Editors: B. Crother and T. Miyata

Copyright © 2013 Mary Paduano et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. R. Elmer, J. A. Dávila, and S. C. Lougheed, “Cryptic diversity and deep divergence in an upper Amazonian leaflitter frog, Eleutherodactylus ockendeni,” BMC Evolutionary Biology, vol. 7, no. 1, article 247, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Hirai and M. Matsui, “Myrmecophagy in a ranid frog Rana rugosa: specialization or weak avoidance to ant eating?” Zoological Science, vol. 17, no. 4, pp. 459–466, 2000. View at Google Scholar · View at Scopus
  3. K. E. Kinkead, J. D. Lanham, and R. R. Montanucci, “Comparison of anesthesia and marking techniques on stress and behavioral responses in two Desmognathus salamanders,” Journal of Herpetology, vol. 40, no. 3, pp. 323–328, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. V. Lalonde-Robert, S. Desgent, S. Duss, and P. Vachon, “Electroencephalographic and physiologic changes after tricaine methanesulfonate immersion of African clawed frogs (Xenopus laevis),” Journal of the American Association for Laboratory Animal Science, vol. 51, no. 5, pp. 622–627, 2012. View at Google Scholar
  5. E. M. Rodriguez, T. Gamble, M. V. Hirt, and S. Cotner, “Presence of Batrachochytrium dendrobatidis at the headwaters of the mississippi river, itasca state park, Minnesota, USA,” Herpetological Review, vol. 40, no. 1, pp. 48–50, 2009. View at Google Scholar · View at Scopus
  6. C. W. Stevens, “Analgesia in amphibians: preclinical studies and clinical applications,” Veterinary Clinics of North America: Exotic Animal Practice, vol. 14, no. 1, pp. 33–44, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. K. K. Cecala, S. J. Price, and M. E. Dorcas, “A comparison of the effectiveness of recommended doses of MS-222 (tricaine methanesulfonate) and Orajel (benzocaine) for amphibian anesthesia,” Herpetological Review, vol. 38, no. 1, pp. 63–66, 2007. View at Google Scholar · View at Scopus
  8. M. A. Mitchell, “Anesthetic Considerations for Amphibians,” Journal of Exotic Pet Medicine, vol. 18, no. 1, pp. 40–49, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. K. M. Carter, C. M. Woodley, and R. S. Brown, “A review of tricaine methanesulfonate for anesthesia of fish,” Reviews in Fish Biology and Fisheries, vol. 21, no. 1, pp. 51–59, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. K. A. Wayson, H. Downes, R. K. Lynn, and N. Gerber, “Anesthetic effects and elimination of tricaine methanesulphonate (MS 222) in terrestial vertebrates,” Comparative Biochemistry and Physiology C, vol. 55, no. 1, pp. 37–41, 1976. View at Google Scholar · View at Scopus
  11. K. A. Wayson, H. Downes, R. K. Lynn, and N. Gerber, “Studies on the comparative pharmacology and selective toxicity of tricaine methanesulfonate: metabolism as a basis of the selective toxicity in poikilotherms,” Journal of Pharmacology and Experimental Therapeutics, vol. 198, no. 3, pp. 695–708, 1976. View at Google Scholar · View at Scopus
  12. H. H. K. Brown, H. K. Tyler, and T. A. Mousseau, “Orajel as an amphibian anesthetic: refining the technique,” Herpetological Review, vol. 35, no. 3, p. 252, 2004. View at Google Scholar · View at Scopus
  13. V. Lalonde-Robert, F. Beaudry, and P. Vachon, “Pharmacologic parameters of MS222 and physiologic changes in frogs (Xenopus laevis) after immersion at anesthetic doses,” Journal of the American Association for Laboratory Animal Science, vol. 51, no. 4, pp. 464–468, 2012. View at Google Scholar
  14. F. Goulet, P. Hélie, and P. Vachon, “Eugenol anesthesia in African clawed frogs (Xenopus laevis) of different body weights,” Journal of the American Association for Laboratory Animal Science, vol. 49, no. 4, pp. 460–463, 2010. View at Google Scholar · View at Scopus
  15. S. A. Guénette, P. Hélie, F. Beaudry, and P. Vachon, “Eugenol for anesthesia of African clawed frogs (Xenopus laevis),” Veterinary Anaesthesia and Analgesia, vol. 34, no. 3, pp. 164–170, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. L. S. Barter and J. F. Antognini, “Kinetics and potency of halothane, isoflurane, and desflurane in the Northern Leopard frog Rana pipiens,” Veterinary Research Communications, vol. 32, no. 5, pp. 357–365, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. J. M. Smith and K. C. Stump, “Isoflurane anesthesia in the African clawed frog (Xenopus laevis),” Contemporary Topics in Laboratory Animal Science, vol. 39, no. 6, pp. 39–42, 2000. View at Google Scholar · View at Scopus
  18. S. A. Guénette, F. Beaudry, and P. Vachon, “Anesthetic properties of propofol in African clawed frogs (Xenopus laevis),” Journal of the American Association for Laboratory Animal Science, vol. 47, no. 5, pp. 35–38, 2008. View at Google Scholar · View at Scopus
  19. K. B. Wojick, J. N. Langan, and M. A. Mitchell, “Evaluation of MS-222 (tricaine methanesulfonate) and propofol as anesthetic agents in Sonoran desert toads (Bufo alvarius),” Journal of Herpetological Medicine and Surgery, vol. 20, no. 2, pp. 79–83, 2011. View at Google Scholar
  20. Y. Cakir and S. M. Strauch, “Tricaine (MS-222) is a safe anesthetic compound compared to benzocaine and pentobarbital to induce anesthesia in leopard frogs (Rana pipiens),” Pharmacological Reports, vol. 57, no. 4, pp. 467–474, 2005. View at Google Scholar · View at Scopus
  21. D. J. Coble, D. K. Taylor, and D. M. Mook, “Analgesic effects of meloxicam, morphine sulfate, flunixin meglumine, and xylazine hydrochloride in African-clawed frogs (Xenopus laevis),” Journal of the American Association for Laboratory Animal Science, vol. 50, no. 3, pp. 355–360, 2011. View at Google Scholar · View at Scopus
  22. K. L. Machin, “Amphibian pain and analgesia,” Journal of Zoo and Wildlife Medicine, vol. 30, no. 1, pp. 2–10, 1999. View at Google Scholar · View at Scopus
  23. C. W. Stevens, “Nonmammalian models for the study of pain,” in Sourcebook of Models for Biomedical Research, pp. 341–352, 2008. View at Google Scholar
  24. E. J. Gentz, “Medicine and surgery of amphibians,” ILAR Journal, vol. 48, no. 3, pp. 255–259, 2007. View at Google Scholar · View at Scopus
  25. N. Topic Popovic, I. Strunjak-Perovic, R. Coz-Rakovac et al., “Tricaine methane-sulfonate (MS-222) application in fish anaesthesia,” Journal of Applied Ichthyology, vol. 28, no. 4, pp. 553–564, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Letcher, “Intracelomic use of tricaine methanesulfonate for anesthesia of bullfrogs (Rana catesbeiana) and leopard frogs (Rana pipiens),” Zoo Biology, vol. 11, no. 4, pp. 243–251, 1992. View at Google Scholar
  27. E. A. Ohr, “Tricaine methanesulfonate. II. Effects on transport of NaCl and H2O,” Comparative Biochemistry and Physiology C, vol. 54, no. 1, pp. 19–22, 1976. View at Google Scholar · View at Scopus
  28. E. A. Ohr, “Tricaine methanesulfonate–I. pH and its effects on anesthetic potency,” Comparative Biochemistry and Physiology C, vol. 54, no. 1, pp. 13–17, 1976. View at Google Scholar · View at Scopus
  29. S. L. Torreilles, D. E. McClure, and S. L. Green, “Evaluation and refinement of euthanasia methods for Xenopus laevis,” Journal of the American Association for Laboratory Animal Science, vol. 48, no. 5, pp. 512–516, 2009. View at Google Scholar · View at Scopus
  30. S. B. Hedges, J. Dudley, and S. Kumar, “TimeTree: a public knowledge-base of divergence times among organisms,” Bioinformatics, vol. 22, no. 23, pp. 2971–2972, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. H. C. Gerhardt, “Acoustic communication in two groups of closely related treefrogs,” Advances in the Study of Behavior, vol. 30, pp. 99–167, 2001. View at Google Scholar · View at Scopus
  32. M. E. Robinson and S. R. Scadding, “The effect of pH on tricaine methanesulfonate induced anaesthesia of the newt Notophthalmus viridescens,” Canadian Journal of Zoology, vol. 61, no. 3, pp. 531–533, 1983. View at Google Scholar
  33. S. Oikawa and Y. Itazawa, “Gill and body surface areas of the carp in relation to body mass, with special reference to the metabolism-size relationship,” Journal of Experimental Biology, vol. 117, no. 1, pp. 1–14, 1985. View at Google Scholar
  34. S. Oikawa, T. Takeda, and Y. Itazawa, “Scale effects of MS-222 on a marine teleost, porgy Pagrus major,” Aquaculture, vol. 121, no. 4, pp. 369–379, 1994. View at Google Scholar · View at Scopus
  35. I. H. Zahl, A. Kiessling, O. B. Samuelsen, and M. K. Hansen, “Anaesthesia of Atlantic cod (Gadus morhua)—effect of pre-anaesthetic sedation, and importance of body weight, temperature and stress,” Aquaculture, vol. 295, no. 1-2, pp. 52–59, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. I. H. Zahl, A. Kiessling, O. B. Samuelsen, and M. K. Hansen, “Anaesthesia of Atlantic halibut (Hippoglossus hippoglossus) effect of pre-anaesthetic sedation, and importance of body weight and water temperature,” Aquaculture Research, vol. 42, no. 9, pp. 1235–1245, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. A. H. Houston, J. T. Corlett, and R. J. Woods, “Specimen weight and M.S. 222,” Journal of the Fisheries Research Board of Canada, vol. 33, no. 6, pp. 1403–1407, 1976. View at Google Scholar
  38. Y. A. Olsen, I. E. Einarsdottir, and K. J. Nilssen, “Metomidate anaesthesia in Atlantic salmon, Salmo salar, prevents plasma cortisol increase during stress,” Aquaculture, vol. 134, no. 1-2, pp. 155–168, 1995. View at Google Scholar · View at Scopus
  39. H. Tsantilas, A. D. Galatos, F. Athanassopoulou, N. N. Prassinos, and K. Kousoulaki, “Efficacy of 2-phenoxyethanol as an anaesthetic for two size classes of white sea bream, Diplodus sargus L., and sharp snout sea bream, Diplodus puntazzo C.,” Aquaculture, vol. 253, no. 1–4, pp. 64–70, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. A. K. Holloway, D. C. Cannatella, H. C. Gerhardt, and D. M. Hillis, “Polyploids with different origins and ancestors form a single sexual polyploid species,” The American Naturalist, vol. 167, no. 4, pp. E88–E101, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. M. B. Ptacek, H. C. Gerhardt, and R. D. Sage, “Speciation by polyploidy in treefrogs: multiple origins of the tetraploid, Hyla versicolor,” Evolution, vol. 48, no. 3, pp. 898–908, 1994. View at Google Scholar · View at Scopus
  42. C. E. Oberfoell, Distinguishing the treefrogs Hyla versicolor and Hyla chrysoscelis in Iowa, and their distributions [Ph.D. thesis], Drake University, 1997.
  43. T. O. Matson, “Erythrocyte size as a taxonomic character in the identification of Ohio Hyla chrysoscelis and H. versicolor,” Herpetologica, vol. 46, no. 4, pp. 457–462, 1990. View at Google Scholar · View at Scopus
  44. G. Fankhauser, “Maintenance of normal structure in heteroploid salamander larvae, through compensation of changes in cell size by adjustment of cell number and cell shape,” Journal of Experimental Zoology, vol. 100, no. 3, pp. 445–455, 1945. View at Google Scholar
  45. D. M. Green, “Size differences in adhesive toe-pad cells of treefrogs of the diploid-polyploid Hyla versicolor complex,” Journal of Herpetology, vol. 14, no. 1, pp. 15–19, 1980. View at Google Scholar
  46. S. P. Otto, “The evolutionary consequences of polyploidy,” Cell, vol. 131, no. 3, pp. 452–462, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. D. B. Ralin, “Ecological and reproductive differentiation in the Cryptic species of the Hyla versicolor complex (Hylidae),” The Southwestern Naturalist, vol. 13, no. 3, p. 283, 1968. View at Google Scholar
  48. S. E. Hernández, C. Sernia, and A. J. Bradley, “The effect of three anaesthetic protocols on the stress response in cane toads (Rhinella marina),” Veterinary Anaesthesia and Analgesia, vol. 39, no. 6, pp. 584–590, 2012. View at Google Scholar
  49. A. Kiessling, D. Johansson, I. H. Zahl, and O. B. Samuelsen, “Pharmacokinetics, plasma cortisol and effectiveness of benzocaine, MS-222 and isoeugenol measured in individual dorsal aorta-cannulated Atlantic salmon (Salmo salar) following bath administration,” Aquaculture, vol. 286, no. 3-4, pp. 301–308, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. D. A. Smith, S. A. Smith, and S. D. Holladay, “Effect of previous exposure to tricaine methanesulfonate on time to anesthesia in hybrid tilapias,” Journal of Aquatic Animal Health, vol. 11, no. 2, pp. 183–186, 1999. View at Google Scholar · View at Scopus
  51. H. Downes, E. A. Kienle, and C. Pederson, “Metamorphosis and the steady state anesthetic concentrations of tricaine, benzocaine and ethanol,” Comparative Biochemistry and Physiology C, vol. 107, no. 1, pp. 95–103, 1994. View at Google Scholar · View at Scopus
  52. A. C. Crook and H. H. Whiteman, “An evaluation of MS-222 and benzocaine as anesthetics for metamorphic and paedomorphic tiger salamanders (Ambystoma tigrinum nebulosum),” The American Midland Naturalist, vol. 155, no. 2, pp. 417–421, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. C. J. Conroy, T. Papenfuss, J. Parker, and N. E. Hahn, “Use of tricaine methanesulfonate (MS222) for euthanasia of reptiles,” Journal of the American Association for Laboratory Animal Science, vol. 48, no. 1, pp. 28–32, 2009. View at Google Scholar · View at Scopus