Table of Contents
ISRN Algebra
Volume 2013 (2013), Article ID 638623, 4 pages
http://dx.doi.org/10.1155/2013/638623
Research Article

On Finite Nilpotent Matrix Groups over Integral Domains

Department of Mathematics, UWI, Mona Campus, Kingston 7, Jamaica

Received 31 October 2013; Accepted 19 November 2013

Academic Editors: I. Cangul and N. Jing

Copyright © 2013 Dmitry Malinin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. C. Brown, Matrices Over Commutative Rings, vol. 169 of Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, New York, NY, USA, 1993. View at MathSciNet
  2. D. Laksov, “Diagonalization of matrices over rings,” Journal of Algebra, vol. 376, pp. 123–138, 2013. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  3. H. Minkowski, “Überber den arithmetischen Begriff der Äquivalenz und über die endlichen Gruppen linearer ganzzahliger Substitutionen,” Journal für Die Reine und Angewandte Mathematik, vol. 100, pp. 449–458, 1887. View at Google Scholar
  4. H. Minkowski, “Zur Theorie der positiven quadratischen Formen,” Journal für Die Reine und Angewandte Mathematik, vol. 101, no. 3, pp. 196–202, 1887. View at Google Scholar
  5. H. Minkowski, Geometrie der Zahlen, Teubner, Berlin, Germany, 1910.
  6. C. W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Interscience Publishers, New York, NY, USA, 1962. View at MathSciNet
  7. C. W. Curtis and I. Reiner, Methods of Representation Yheory. Vol. I, John Wiley & Sons, New York, NY, USA, 1981. View at MathSciNet
  8. C. W. Curtis and I. Reiner, Methods of Representation Theory. Vol. II, vol. 2, John Wiley & Sons, New York, NY, USA, With applications to finite groups and orders, 1987. View at MathSciNet
  9. W. Feit, “Finite linear groups and theorems of Minkowski and Schur,” Proceedings of the American Mathematical Society, vol. 125, no. 5, pp. 1259–1262, 1997. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  10. H.-J. Bartels, “Zur Galoiskohomologie definiter arithmetischer Gruppen,” Journal für die Reine und Angewandte Mathematik, vol. 298, pp. 89–97, 1978. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  11. J. Rohlfs, “Arithmetisch definierte Gruppen mit Galoisoperation,” Inventiones Mathematicae, vol. 48, no. 2, pp. 185–205, 1978. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  12. H.-J. Bartels and D. A. Malinin, “Finite Galois stable subgroups of GL n,” in Noncommutative Algebra and Geometry, C. de Concini, F. van Oystaeyen, N. Vavilov, and A. Yakovlev, Eds., vol. 243 of Lecture Notes in Pure and Applied Mathematics, pp. 1–22, 2006. View at Publisher · View at Google Scholar · View at MathSciNet
  13. H.-J. Bartels and D. A. Malinin, “On finite Galois stable subgroups of GL n in some relative extensions of number fields,” Journal of Algebra and its Applications, vol. 8, no. 4, pp. 493–503, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  14. D. A. Malinin, “Galois stability for integral representations of finite groups,” Rossiĭskaya Akademiya Nauk: Algebra i Analiz, vol. 12, no. 3, pp. 106–145, 2000 (Russian). View at Google Scholar · View at MathSciNet
  15. B. Bürgisser, “On the projective class group of arithmetic groups,” Mathematische Zeitschrift, vol. 184, no. 3, pp. 339–357, 1983. View at Publisher · View at Google Scholar · View at MathSciNet
  16. P. Roquette, “Realisierung von Darstellungen endlicher nilpotenter Gruppen,” Archiv der Mathematik, vol. 9, pp. 241–250, 1958. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  17. D. A. Malinin, “Integral representations of p-groups over local fields,” Doklady Akademii Nauk SSSR, vol. 309, no. 5, pp. 1060–1063, 1989 (Russian). View at Google Scholar · View at MathSciNet
  18. B. Bürgisser, “Finite p-periodic quotients of general linear groups,” Mathematische Annalen, vol. 256, no. 1, pp. 121–132, 1981. View at Publisher · View at Google Scholar · View at MathSciNet
  19. C. R. Leedham-Green and W. Plesken, “Some remarks on Sylow subgroups of general linear groups,” Mathematische Zeitschrift, vol. 191, no. 4, pp. 529–535, 1986. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  20. J.-P. Serre, “Bounds for the orders of the finite subgroups of G(k),” in Group Representation Theory, pp. 405–450, EPFL Press, Lausanne, Switzerland, 2007. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  21. A. E. Zalesskii, “Linear groups,” Russian Mathematical Surveys, vol. 36, pp. 63–128, 1981. View at Google Scholar
  22. A. E. Zalesskiĭ, “Linear groups,” in Algebra. Topology. Geometry, vol. 21 of Itogi Nauki i Tekhniki, pp. 135–182, Moscow, Russia, 1983. View at Google Scholar · View at MathSciNet
  23. P. H. Tiep and A. E. Zalesskii, “Some aspects of finite linear groups: a survey,” Journal of Mathematical Sciences, vol. 100, no. 1, pp. 1893–1914, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  24. J.-P. Serre, “Propriétés galoisiennes des points d'ordre fini des courbes elliptiques,” Inventiones Mathematicae, vol. 15, no. 4, pp. 259–331, 1972. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  25. F. Destrempes, “Deformations of Galois representations: the flat case,” in Seminar on Fermat's Last Theorem, vol. 17, pp. 209–231, American Mathematical Society, Providence, RI, USA, 1995. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  26. V. A. Kolyvagin, “Formal groups and the norm residue symbol,” Izvestiya Akademii Nauk SSSR, vol. 43, no. 5, Article ID 10541120, 1979. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  27. D. A. Malinin, “Integral representations of p-groups of a given class of nilpotency over local fields,” Rossiĭskaya Akademiya Nauk: Algebra i Analiz, vol. 10, no. 1, pp. 58–67, 1998 (Russian). View at Google Scholar · View at MathSciNet