Table of Contents
ISRN Zoology
Volume 2013, Article ID 640691, 7 pages
http://dx.doi.org/10.1155/2013/640691
Research Article

The Abundance and Biting Patterns of Culex quinquefasciatus Say (Culicidae) in the Coastal Region of Nigeria

1Department of Animal and Environmental Biology, University of Port Harcourt, Port Harcourt, Nigeria
2Department of Biological Science, Cross River University of Technology, Calabar, Nigeria
3Department of Medical Laboratory Sciences, Rivers State University of Science and Technology, Port Harcourt, Nigeria
4Department of Biological Sciences, Microbiology Unit, Crawford University, Igbesa, Ogun State, Nigeria

Received 19 January 2013; Accepted 19 February 2013

Academic Editors: K. Lunau, D. Park, V. Tilgar, and S. Van Nouhuys

Copyright © 2013 Emmanuel C. Uttah et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. R. David, G. S. Ribeiro, and R. M. de Freitas, “Bionomics of Culex quinquefasciatus within urban areas of Rio de Janeiro, Southeastern Brazil,” Revista de Saúde Pública, vol. 46, no. 5, pp. 858–865, 2012. View at Google Scholar
  2. W. K. Reisen, H. D. Lothrop, and B. Lothrop, “Factors influencing the outcome of mark-release-recapture studies with Culex tarsalis (Diptera: Culicidae),” Journal of Medical Entomology, vol. 40, no. 6, pp. 820–829, 2003. View at Google Scholar · View at Scopus
  3. C. E. Jones, L. P. Lounibos, P. P. Marra, and A. M. Kilpatrick, “Rainfall influences survival of Culex pipiens (Diptera: Culicidae) in a residential neighborhood in the mid-atlantic United States,” Journal of Medical Entomology, vol. 49, no. 3, pp. 467–473, 2012. View at Google Scholar
  4. D. K. de Souza, B. Koudou, L. A. Kelly-Hope, M. D. Wilson, M. J. Bockarie, and D. A. Boakye, “Diversity and transmission competence in lymphatic filariasis vectors in West Africa, and the implications for accelerated elimination of Anopheles-transmitted filariasis,” Parasites & Vectors, vol. 5, article 259, 2012. View at Google Scholar
  5. A. E. Jamal, A. D. Nugud, M. A. Abdalmagid, A. I. Bashir, M. Brair, and I. H. Elnaeim, “Susceptibility of Culex quinquefasciatus Say (Diptera: Culicidae) in Khartoum locality (Sudan) to Malathion, Temephos, Lambdacyhalothrin and Permethrin insecticides,” Sudanese Journal of Public Health, vol. 6, no. 2, pp. 56–62, 2011. View at Google Scholar
  6. A. Spielman and M. D’Antonio, Mosquito: A Natural History of Our Most Persistent and deadly Foe, Hyperion, New York, NY, USA, 2001.
  7. T. G. Andreadis, M. C. Thomas, and J. J. Shepard, Identification Guide to the Mosquitoes of Connecticut, The Connecticut Agricultural Experiment Station, New Haven, Conn, USA, 2005.
  8. M. Zinser, F. Ramberg, and E. Willott, “Culex quinquefasciatus (Diptera: Culicidae) as a potential West Nile virus vector in Tucson, Arizona: blood meal analysis indicates feeding on both humans and birds,” Journal of Insect Science, vol. 4, article 20, 2004. View at Google Scholar · View at Scopus
  9. G. Molaei, T. G. Andreadis, P. M. Armstrong et al., “Host feeding pattern of Culex quinquefasciatus (Diptera: Culicidae) and its role in transmission of West Nile virus in Harris County, Texas,” The American Journal of Tropical Medicine and Hygiene, vol. 77, no. 1, pp. 73–81, 2007. View at Google Scholar · View at Scopus
  10. A. M. Kilpatrick, P. Daszak, M. J. Jones, P. P. Marra, and L. D. Kramer, “Host heterogeneity dominates West Nile virus transmission,” Proceedings of the Royal Society B, vol. 273, no. 1599, pp. 2327–2333, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Molaei, T. G. Andreadis, P. M. Armstrong, J. F. Anderson, and C. R. Vossbrinck, “Host feeding patterns of Culex mosquitoes and west nile virus transmission, northeastern United States,” Emerging Infectious Diseases, vol. 12, no. 3, pp. 468–474, 2006. View at Google Scholar · View at Scopus
  12. G. L. Hamer, U. D. Kitron, T. L. Goldberg et al., “Host selection by Culex pipiens mosquitoes and west nile virus amplification,” The American Journal of Tropical Medicine and Hygiene, vol. 80, no. 2, pp. 268–278, 2009. View at Google Scholar · View at Scopus
  13. A. M. Kilpatrick, L. D. Kramer, S. R. Campbell, E. O. Alleyne, A. P. Dobson, and P. Daszak, “West Nile virus risk assessment and the bridge vector paradigm,” Emerging Infectious Diseases, vol. 11, no. 3, pp. 425–429, 2005. View at Google Scholar · View at Scopus
  14. A. M. Kilpatrick, L. D. Kramer, M. J. Jones, P. P. Marra, and P. Daszak, “West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior,” PLoS Biology, vol. 4, no. 4, pp. 606–610, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. G. L. Hamer, U. D. Kitron, J. D. Brawn et al., “Culex pipiens (Diptera: Culicidae): a bridge vector of West Nile virus to humans,” Journal of Medical Entomology, vol. 45, no. 1, pp. 125–128, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. A. O. Oduola and O. O. Awe, “Behavioural biting preference of Culex quinquefasciatus in human host in Lagos metropolis Nigeria,” Journal of Vector Borne Diseases, vol. 43, no. 1, pp. 16–20, 2006. View at Google Scholar · View at Scopus
  17. M. A. Kulkarni, R. Malima, F. W. Mosha et al., “Efficacy of pyrethroid-treated nets against malaria vectors and nuisance-biting mosquitoes in Tanzania in areas with long-term insecticide-treated net use,” Tropical Medicine & International Health, vol. 12, no. 9, pp. 1061–1073, 2007. View at Google Scholar
  18. M. T. Gillies and M. Coetzee, A Supplement to the Anophelinae of Africa South of the Sahara (Afro-Tropical Region), Publication of South African Institute of Medical Research, No. 55, 1987.
  19. M. T. Gillies and B. de Meillon, The Anophelinae of Africa South of the Sahara (Ethiopian Zoogeographical Region), Publications of the South African Institute for Medical Research, No. 54, 1968.
  20. F. W. Edwards, Mosquitoes of the Ethiopian Region III. Culicidae Adult and Pupae Anopheles Mosquitoes, vol. 23, Publication of the Institute Medical Research, 1941.
  21. World Health Organization, Manual on Practical Entomology in Malaria: Vector Bionomics and Organization, Offset Publication, Geneva, Switzerland, 1975.
  22. J. K. Udonsi, “Filariasis in the Igwun River Basin, Nigeria: an epidemiological and clinical study with a note on the vectors,” Annals of Tropical Medicine and Parasitology, vol. 82, no. 1, pp. 75–82, 1988. View at Google Scholar · View at Scopus
  23. S. W. Lindsay, F. C. Shenton, R. W. Snow, and B. M. Greenwood, “Responses of Anopheles gambiae complex mosquitoes to the use of untreated bednets in The Gambia,” Medical and Veterinary Entomology, vol. 3, no. 3, pp. 253–262, 1989. View at Google Scholar · View at Scopus
  24. A. Gajanana, R. Rajendran, P. P. Samuel et al., “Japanese encephalitis in South Arcot district, Tamil Nadu, India: a three-year longitudinal study of vector abundance and infection frequency,” Journal of Medical Entomology, vol. 34, no. 6, pp. 651–659, 1997. View at Google Scholar · View at Scopus
  25. K. D. Ramaiah and P. K. Das, “Seasonality of adult Culex quinquefasciatus and transmission of bancroftian filariasis in pondicherry, South India,” Acta Tropica, vol. 50, no. 4, pp. 275–283, 1992. View at Publisher · View at Google Scholar · View at Scopus
  26. M. W. Service, “Ecology of mosquitoes of Northern Guinea Savannah of Nigeria,” Bulletin of Entomological Research, vol. 54, pp. 601–632, 1963. View at Google Scholar
  27. R. Subra, “Biology and control of Culex pipiens quinquefasciatus, Say, 1823 (Diptera: Culicidae) with special reference to Africa,” Insect Science and Its Application, vol. 4, pp. 319–338, 1981. View at Google Scholar
  28. J. Hamon, “Etude de l’age physiologique des femelles d’anophèles dans les zones traitees au DDT, et non traitdes, de la region de Bobo-Dioulasso, Haute Volta,” Bulletin of the World Health Organization, vol. 28, article 83, 1963. View at Google Scholar
  29. B. E. B. Nwoke, F. O. Nduka, O. M. Okereke, and O. C. Ehighibe, “Sustainable urban development and human health: septic tank as a major breeding habitat of mosquito vectors of human diseases in south-eastern Nigeria,” Applied Parasitology, vol. 34, no. 1, pp. 1–10, 1993. View at Google Scholar · View at Scopus
  30. P. Bourdoux, P. Seghers, M. Mafuta et al., “Cassava products: HCN content and detoxification processes,” in Nutritional Factors Involved in Goitrogenic Action of Cassava, F. Delange, F. Iteke, and Ermams, Eds., vol. 184, pp. 51–58, International Development Research Centre, Ottawa, Canada, IDRC Monograph, 1982.
  31. World Health Organization, “Konzo, a distinct type of upper motor neuron disease,” Weekly Epidemiological Record, vol. 71, no. 30, pp. 225–232, 1996. View at Google Scholar
  32. J. P. Banea-Mayambu, T. Tylleskär, N. Gitebo, N. Matadi, M. Gebre-Medhin, and H. Rosling, “Geographical and seasonal association between linamarin and cyanide exposure from cassava and the upper motor neurone disease konzo in former Zaire,” Tropical Medicine and International Health, vol. 2, no. 12, pp. 1143–1151, 1997. View at Google Scholar · View at Scopus
  33. T. Tylleskar, M. Banea, N. Bikangi, R. D. Cooke, N. H. Poulter, and H. Rosling, “Cassava cyanogens and konzo, an upper motoneuron disease found in Africa,” The Lancet, vol. 339, no. 8787, pp. 208–211, 1992. View at Publisher · View at Google Scholar · View at Scopus
  34. E. C. Uttah, P. E. Simonsen, E. M. Pedersen, and J. K. Udonsi, “Public health dimensions of Cassava processing in Eastern Nigeria,” International Journal of Social Sciences, vol. 4, no. 1, pp. 22–33, 2005. View at Google Scholar
  35. M. O. E. Iwuala, “Cassava fermentation pools as major breeding foci for culicine mosquitoes in Nsukka Nigeria,” The Nigerian Medical Journal, vol. 9, no. 3, pp. 327–335, 1979. View at Google Scholar · View at Scopus
  36. L. D. Edungbola, “Water utilization and its health implications in Ilorin, Kwara State, Nigeria,” Acta Tropica, vol. 37, no. 1, pp. 73–81, 1980. View at Google Scholar · View at Scopus
  37. B. A. Southgate, “Recent advances in the epidemiology and control of filarial infections including entomological aspects of transmission,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 78, pp. 19–28, 1984. View at Google Scholar · View at Scopus
  38. B. E. B. Nwoke and J. Ebo, “Human activities in Southeastern Nigerian and their potential danger to the breeding of mosquito vectors of human diseases,” Annals of Medical Sciences, 1993. View at Google Scholar
  39. E. M. Pedersen and D. A. Mukoko, “Impact of insecticide-treated materials on filarial transmission by the various species of vector mosquito in Africa,” Annals of Tropical Medicine and Parasitology, vol. 96, Supplement 2, pp. S91–S95, 2002. View at Google Scholar
  40. J. E. Mokry, “A method for estimating the age of field-collected female Simulium damnosum s.1. (Diptera: Simuliidae),” Tropenmedizin und Parasitologie, vol. 31, no. 1, pp. 121–124, 1980. View at Google Scholar · View at Scopus
  41. N. Kolstrup, J. E. McMahon, and S. A. Magayuka, “Control measures against bancroftian filariasis in coastal villages in Tanzania,” Annals of Tropical Medicine and Parasitology, vol. 75, no. 4, pp. 433–451, 1981. View at Google Scholar · View at Scopus
  42. J. C. Anosike and C. O. E. Onwuliri, “Experimental Wuchereria bancrofti infection of Culex quinquefasciatus and Aedes aegypti,” Angewandte Parasitologie, vol. 33, no. 3, pp. 139–142, 1992. View at Google Scholar · View at Scopus
  43. J. Brengues, La FiLariose de Bancroft en Afrique de L'Ouest, vol. 79, Orstom, 1975.
  44. G. S. Nelson, R. B. Heish, and M. Furlong, “Studies in filariasis in East Africa. II. Filarial infections in man and mosquitoes on the Kenya coast,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 56, pp. 202–217, 1962. View at Google Scholar
  45. G. B. White, “Studies on transmission of bancroftian filariasis in North-eastern Tanzania,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 65, no. 6, pp. 819–829, 1971. View at Publisher · View at Google Scholar · View at Scopus
  46. F. Kuhlow, “Observations and experiments on Culex antennatus (Becker) as a potential vector of Bancroftian filariasis in West Africa,” Tropical Medicine and Parasitology, vol. 38, pp. 349–350, 1987. View at Google Scholar
  47. P. J. Southgate, “Biology of bruchidae,” Annual Review of Entomology, vol. 24, pp. 449–473, 1979. View at Publisher · View at Google Scholar
  48. P. E. Simonsen, D. W. Meyrowitsch, W. H. Makunde, and P. Magnussen, “Bancroftian filariasis: the pattern of microfilaraemia and clinical manifestations in three endemic communities of Northeastern Tanzania,” Acta Tropica, vol. 60, no. 3, pp. 179–187, 1995. View at Google Scholar · View at Scopus
  49. H. J. Maasch, “Quantitative Untersunchungen zur Ubertragung von Wuchereria bancrofti in der Kustenregion Liberias,” Zeitschrift für Tropenmedizin und Parasitologie, vol. 24, no. 4, pp. 419–434, 1973. View at Google Scholar
  50. R. Subra, “Urbanization et filariose de bancroft en Afrique et a Madagascar,” Cahiers ORSTOM Série Entomologie Médicale et Parasitologie, vol. 13, no. 4, pp. 193–203, 1975. View at Google Scholar