Table of Contents
ISRN Physical Chemistry
Volume 2013, Article ID 675138, 10 pages
Research Article

Inefficient Vibrational Cooling of C60 in a Supersonic Expansion

1Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
2Department of Chemistry, Emory University, Atlanta, GA 30322, USA
3Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA
4Departments of Chemistry and Astronomy, University of Illinois, Urbana, IL 61801, USA

Received 17 September 2013; Accepted 12 November 2013

Academic Editors: M. Sliwa, D. Strout, L. Vattuone, and A. Vergara

Copyright © 2013 Jacob T. Stewart et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


High-resolution gas-phase infrared spectroscopy of buckminsterfullerene (C60) was attempted near 8.5 μm using cavity ring-down spectroscopy. Solid C60 was heated in a high-temperature (~950 K) oven and cooled using an argon supersonic expansion generated from a 12.7 mm × 150 μm slit. The expected ratio is ~140 for vibrationally cold C60, but no absorption signal has been observed, presumably due to a lack of vibrational cooling of C60 in the expansion. Measurements of D2O at 875 K are presented as a test of instrument alignment at high temperature and show that efficient rotational cooling of D2O occurs in the hot oven (  = 20 K in the expansion), though vibrational cooling does not occur. The attempted C60 spectroscopy is compared to previous work which showed efficient vibrational cooling of polycyclic aromatic hydrocarbons (PAHs). Possible alternative experiments for observing a cold, gas-phase spectrum of C60 are also considered.