Table of Contents
ISRN Robotics
Volume 2013 (2013), Article ID 679784, 8 pages
http://dx.doi.org/10.5402/2013/679784
Research Article

SPAM for a Manipulator by Best Next Move in Unknown Environments

Department of Engineering and Computing Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX 78412, USA

Received 15 January 2013; Accepted 4 February 2013

Academic Editors: Z. Bi and G. C. Gini

Copyright © 2013 Dugan Um and Dongseok Ryu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Kavraki and J. C. Latombe, “Randomized preprocessing of configuration space for fast path planning,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '94), pp. 2138–2145, San Diego, Calif, USA, May 1994. View at Scopus
  2. R. Mahkovic and T. Slivnik, “Generalized local voronoi diagram of visible region,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '98), pp. 349–355, Leuven, Belgium, May 1998. View at Scopus
  3. S. M. LaValle and J. J. Kuffner, “Rapidly-exploring random trees: progress and prospects,” in Algorithmic and Computational Robotics: New Directions, B. R. Donald, K. M. Lynch, and D. Rus, Eds., pp. 293–308, A. K. Peters, Wellesley, Mass, USA, 2001. View at Google Scholar
  4. B. Laroche, P. Martin, and P. Rouchon, “Motion planning for a class of partial differential equations with boundary control,” in Proceedings of the 1998 37th IEEE Conference on Decision and Control (CDC '98), pp. 3494–3497, Tampa, Fla, USA, December 1998. View at Scopus
  5. J. T. Schwartz and M. Sharir, “On the “piano movers” problem. II. General techniques for computing topological properties of real algebraic manifolds,” Advances in Applied Mathematics, vol. 4, no. 3, pp. 298–351, 1983. View at Google Scholar · View at Scopus
  6. C. Guestrin and D. Ormoneit, “Robust combination of local controllers,” in Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence (UAI '01), pp. 178–185, Seattle, Wash, USA, August 2001.
  7. N. Bezzo, R. Fierro, A. Swingler, and S. Ferrari, “A disjunctive programming approach for motion planning of mobile router networks,” International Journal of Robotics and Automation, vol. 26, no. 1, pp. 13–25, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. E. U. Acar, H. Choset, Y. Zhang, and M. Schervish, “Path planning for robotic demining: robust sensor-based coverage of unstructured environments and probabilistic methods,” International Journal of Robotics Research, vol. 22, no. 7-8, pp. 441–466, 2003. View at Google Scholar · View at Scopus
  9. E. Balas, “Disjunctive programming and a hierarchy of relaxations for discrete optimization problems,” SIAM Journal on Algebraic and Discrete Methods, vol. 6, no. 3, pp. 466–486, 1985. View at Publisher · View at Google Scholar
  10. S. J. Julier and J. K. Uhlmann, “A new extension of the kalman filter to nonlinear systems,” in Proceedings of the International Symposium on Aerospace/Defense Sensing, Simulation and Controls, Orlando, Fla, USA, April 1997.
  11. D. Um and D. Ryu, “A framework for unknown environment manipulator motion planning via model based realtime rehearsal,” Journal of Automation, Mobile Robotics & Intelligent Systems, vol. 5, no. 1, pp. 30–35, 2011. View at Google Scholar
  12. Y. Yu and K. Gupta, “C-space entropy: a measure for view planning and exploration for general robot-sensor systems in unknown environments,” International Journal of Robotics Research, vol. 23, no. 12, pp. 1197–1223, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Kieda, H. Tanaka, and T. Zhang, “On-line optimization of avoidance ability for redundant manipulator,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '06), Beijing, China, October 2006.
  14. Z. Chu, P. Cao, Y. Shao, D. Qian, and X. Wang, “Trajectory planning for a redundant mobile manipulator using avoidance manipulability,” in Proceedings of the IEEE International Conference on Automation and Logistics (ICAL '09), Shenyang, China, August 2009.
  15. W. Qizhi and X. De, “On the kinematics analysis and motion planning of the manipulator of a mobile robot,” in Proceedings of the on Chinese Control and Decision Conference (CCDC ;11), Mianyang, China, May 2011.
  16. J. W. Burdick, “Global kinematics for manipulator planning and control,” Proceedings of the on Signals, Systems and Computers, vol. 2, pp. 1002–1007, 1989. View at Google Scholar
  17. D. Um, “How to tackle sensor-based manipulator planning problems using model-based planners: conversion and implementation,” International Journal of Robotics and Automation, vol. 24, no. 2, pp. 137–146, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Um, D. Ryu, and M. Kal, “Multiple intensity differentiation for 3D surface reconstruction with mono-vision infrared proximity array sensor,” IEEE Sensors Journal, vol. 11, no. 12, pp. 3352–3358, 2011. View at Google Scholar
  19. P. J. Besl and N. D. McKay, “A method for registration of 3-D shapes,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 2, pp. 239–256, 1992. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Temerinac, M. Reisert, and H. Burkhardt, “Invariant features for searching in protein fold databases,” International Journal of Computer Mathematics, vol. 84, no. 5, pp. 635–651, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Torabi and K. Gupta, “Integrated view and path planning for an autonomous six-DOF eye-in-hand object modeling system,” in Proceedings of the 23rd IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '10), pp. 4516–4521, Taipei, Taiwan, October 2010. View at Publisher · View at Google Scholar · View at Scopus