Table of Contents
ISRN Molecular Imaging
Volume 2013 (2013), Article ID 689279, 7 pages
http://dx.doi.org/10.1155/2013/689279
Research Article

Subcutaneous Administration of D-Luciferin is an Effective Alternative to Intraperitoneal Injection in Bioluminescence Imaging of Xenograft Tumors in Nude Mice

1Department of Otolaryngology-Head and Neck Surgery, University of Virginia Health System, P.O. Box 800713, Charlottesville, VA 22908-0713, USA
2Department of Biochemistry, National Liver Institute, Menoufiya University, Shebin Elkom 32511, Egypt
3Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA 23298, USA
4Department of Radiation Oncology, Georgia Health University, Augusta, GA 30912, USA
5Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA 23298, USA

Received 27 August 2013; Accepted 27 October 2013

Academic Editors: H. Hendrikse and P. Lass

Copyright © 2013 Ashraf A. Khalil et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. W. Mc, “Properties of the reaction utilizing adenosinetriphosphate for,” The Journal of Biological Chemistry, vol. 191, no. 2, pp. 547–557, 1951. View at Google Scholar · View at Scopus
  2. J.-B. Kim, K. Urban, E. Cochran et al., “Non-invasive detection of a small number of bioluminescent cancer cells in vivo,” PLoS ONE, vol. 5, no. 2, Article ID e9364, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. C. E. Badr and B. A. Tannous, “Bioluminescence imaging: progress and applications,” Trends in Biotechnology, vol. 29, no. 12, pp. 624–633, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Rousseau, V. Escriou, P. Perrot et al., “Advantages of bioluminescence imaging to follow siRNA or chemotherapeutic treatments in osteosarcoma preclinical models,” Cancer Gene Therapy, vol. 17, no. 6, pp. 387–397, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Zhang, J. P. Bressler, J. Neal et al., “ABCG2/BCRP expression modulates D-luciferin-based bioluminescence imaging,” Cancer Research, vol. 67, no. 19, pp. 9389–9397, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. C. H. Contag, D. Jenkins, P. R. Contag, and R. S. Negrin, “Use of reporter genes for optical measurements of neoplastic disease in vivo,” Neoplasia, vol. 2, no. 1-2, pp. 41–52, 2000. View at Google Scholar · View at Scopus
  7. A. Nakajima, C. M. Seroogy, M. R. Sandora et al., “Antigen-specific T cell-mediated gene therapy in collagen-induced arthritis,” Journal of Clinical Investigation, vol. 107, no. 10, pp. 1293–1301, 2001. View at Google Scholar · View at Scopus
  8. T. F. Massoud, R. Paulmurugan, A. De, P. Ray, and S. S. Gambhir, “Reporter gene imaging of protein-protein interactions in living subjects,” Current Opinion in Biotechnology, vol. 18, no. 1, pp. 31–37, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Y. Adams, M. Johnson, M. Sato et al., “Visualization of advanced human prostate cancer lesions in living mice by a targeted gene transfer vector and optical imaging,” Nature Medicine, vol. 8, no. 8, pp. 891–896, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. Q. Wang, M. Ornstein, and H. L. Kaufman, “Imaging the immune response to monitor tumor immunotherapy,” Expert Review of Vaccines, vol. 8, no. 10, pp. 1427–1437, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. C. P. W. Klerk, R. M. Overmeer, T. M. H. Niers et al., “Validity of bioluminescence measurements for noninvasive in vivo imaging of tumor load in small animals,” BioTechniques, vol. 43, no. 1, pp. 7–30, 2007. View at Google Scholar · View at Scopus
  12. M. Edinger, P. Hoffmann, C. H. Contag, and R. S. Negrin, “Evaluation of effector cell fate and function by in vivo bioluminescence imaging,” Methods, vol. 31, no. 2, pp. 172–179, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Tuli, A. Surmak, J. Reyes et al., “Development of a novel preclinical pancreatic cancer research model: bioluminescence image-guided focal irradiation and tumor monitoring of orthotopic xenografts,” Translational Oncology, vol. 5, no. 2, pp. 77–84, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. Z. Paroo, R. A. Bollinger, D. A. Braasch et al., “Validating bioluminescence imaging as a high-throughput, Quantitative modality for assessing tumor burden,” Molecular Imaging, vol. 3, no. 2, pp. 117–124, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Inoue, S. Kiryu, K. Izawa, M. Watanabe, A. Tojo, and K. Ohtomo, “Comparison of subcutaneous and intraperitoneal injection of d-luciferin for in vivo bioluminescence imaging,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 36, no. 5, pp. 771–779, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. K.-H. Lee, S. S. Byun, J.-Y. Paik et al., “Cell uptake and tissue distribution of radioiodine labelled D-luciferin: implications for luciferase based gene imaging,” Nuclear Medicine Communications, vol. 24, no. 9, pp. 1003–1009, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Keyaerts, J. Verschueren, T. J. Bos et al., “Dynamic bioluminescence imaging for quantitative tumour burden assessment using IV or IP administration of d-luciferin: effect on intensity, time kinetics and repeatability of photon emission,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 35, no. 5, pp. 999–1007, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. M. J. Bryant, T. L. Chuah, J. Luff, M. F. Lavin, and D. G. Walker, “A novel rat model for glioblastoma multiforme using a bioluminescent F98 cell line,” Journal of Clinical Neuroscience, vol. 15, no. 5, pp. 545–551, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Giannini, J. N. Sarkaria, A. Saito et al., “Patient tumor EGFR and PDGFRA gene amplifications retained in an invasive intracranial xenograft model of glioblastoma multiforme,” Neuro-Oncology, vol. 7, no. 2, pp. 164–176, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. J. N. Myers, F. C. Holsinger, S. A. Jasser, B. N. Bekele, and I. J. Fidler, “An orthotopic nude mouse model of oral tongue squamous cell carcinoma,” Clinical Cancer Research, vol. 8, no. 1, pp. 293–298, 2002. View at Google Scholar · View at Scopus
  21. A. A. Khalil, M. J. Jameson, W. C. Broaddus et al., “The influence of hypoxia and pH on bioluminescence imaging of luciferase-transfected tumor cells and xenografts,” International Journal of Molecular Imaging, vol. 2013, Article ID 287697, 9 pages, 2013. View at Publisher · View at Google Scholar
  22. Y. Inoue, S. Kiryu, M. Watanabe, A. Tojo, and K. Ohtomo, “Timing of imaging after D-luciferin injection affects the longitudinal assessment of tumor growth using in vivo bioluminescence imaging,” International Journal of Biomedical Imaging, vol. 2010, Article ID 471408, 6 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Sun, L. Hou, T. Prugpichailers et al., “Firefly luciferase-based dynamic bioluminescence imaging: a noninvasive technique to assess tumor angiogenesis,” Neurosurgery, vol. 66, no. 4, pp. 751–757, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Inoue, A. Tojo, R. Sekine et al., “In vitro validation of bioluminescent monitoring of disease progression and therapeutic response in leukaemia model animals,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 33, no. 5, pp. 557–565, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. W. Wang and W. S. El-Deiry, “Bioluminescent molecular imaging of endogenous and exogenous p53-mediated transcription in vitro and in vivo using an HCT116 human colon carcinoma xenograft model,” Cancer Biology and Therapy, vol. 2, no. 2, pp. 196–202, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Baba, S. Y. Cho, Z. Ye, L. Cheng, J. M. Engles, and R. L. Wahl, “How reproducible is bioluminescent imaging of tumor cell growth? Single time point versus the dynamic measurement approach,” Molecular Imaging, vol. 6, no. 5, pp. 315–322, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. M. G. Abdelwahab, T. Sankar, M. C. Preul, and A. C. Scheck, “Intracranial implantation with subsequent 3D in vivo bioluminescent imaging of murine gliomas,” Journal of Visualized Experiments, no. 57, article e3403, 2011. View at Google Scholar · View at Scopus