Table of Contents
ISRN Tribology
Volume 2013, Article ID 703202, 6 pages
Research Article

High-Speed Ice Friction Experiments under Lab Conditions: On the Influence of Speed and Normal Force

1Fraunhofer IWM MikroTribologie Centrum, Wöhlerstraße 9, 79108 Freiburg, Germany
2Ingenieurbüro Gurgel und Partner, Weinligstraße 11, 04155 Leipzig, Germany

Received 11 October 2012; Accepted 23 October 2012

Academic Editors: L. Bourithis, J. De Vicente, J. Mao, and S. H. Yao

Copyright © 2013 Matthias Scherge et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Using a high-speed tribometer, coefficients of friction for bobsled runners were measured over a wide range of loads and speeds. Between 2.8 m/s and 28 m/s (equal to 10 km/h and 100 km/h), the measured coefficients of friction showed a linear decrease with increasing speed. The experiments revealed ultra-low friction coefficients of less than 0.01 after exceeding a sliding speed of about 20 m/s. At maximum speed of 28 m/s, the average coefficient of friction was 0.007. The experiments help to bridge the gap between numerous low-speed friction tests by other groups and tests performed with bobsleds on real tracks. It was shown that the friction data obtained by other groups and our measurements can be approximated by a single master curve. This curve exhibits the largest decrease in friction up to a sliding speed of about 3 m/s. The further increase in speed generates only a small decrease in friction. In addition, friction decreases with increasing load. The decrease stops when ice wear becomes effective. The load point of constant friction depends on the cross-sectional radius of the runner. The larger the radius is, the higher the load is, before the ice shows signs of fracture. It turned out that besides aerodynamic drag (not considered in this work), ice friction is one of the main speed-limiting factors. In terms of runner geometry, a flat contact of runner and ice ensures the lowest friction. The rocker radius of the runner is of greater importance for a low coefficient of friction than the cross-sectional radius.