Table of Contents
ISRN Obstetrics and Gynecology
Volume 2013, Article ID 704252, 4 pages
http://dx.doi.org/10.1155/2013/704252
Research Article

PLAC1 Expression Decreases in Chorionic Villi in Response to Labor

1Department of Pediatrics, University of South Florida Morsani College of Medicine, Tampa, FL 33606, USA
2Department of Obstetrics and Gynecology, University of South Florida Morsani College of Medicine, Tampa, FL 33606, USA
3Department of Pathology and Cell Biology, University of South Florida Morsani College of Medicine, Tampa, FL 33606, USA

Received 26 March 2013; Accepted 26 May 2013

Academic Editors: A. Martin-Hidalgo and G. Rizzo

Copyright © 2013 Yahdira M. Rodriguez-Prado et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Cocchia, R. Huber, S. Pantano et al., “PLAC1, an Xq26 gene with placenta-specific expression,” Genomics, vol. 68, no. 3, pp. 305–312, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. L. Jovine, W. G. Janssen, E. S. Litscher, and P. M. Wassarman, “The PLAC1-homology region of the ZP domain is sufficient for protein polymerisation,” BMC Biochemistry, vol. 7, article 11, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Bökel, A. Prokop, and N. H. Brown, “Papillote and piopio: drosophila ZP-domain proteins required for cell adhesion to the apical extracellular matrix and microtubule organization,” Journal of Cell Science, vol. 118, no. 3, pp. 633–642, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. M. E. Fant, H. Barerra-Saldana, W. Dubinsky, B. Poindexter, and R. Bick, “The PLAC1 protein localizes to membranous compartments in the apical region of the syncytiotrophoblast,” Molecular Reproduction and Development, vol. 74, no. 7, pp. 922–929, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Farina, N. Rizzo, M. Concu et al., “Lower maternal PLAC1 mRNA in pregnancies complicated with vaginal bleeding (threatened abortion < 20 weeks) and a surviving fetus,” Clinical Chemistry, vol. 51, no. 1, pp. 224–227, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Purwosunu, A. Sekizawa, A. Farina et al., “Cell-free mRNA concentrations of CRH, PLAC1, and selectin-P are increased in the plasma of pregnant women with preeclampsia,” Prenatal Diagnosis, vol. 27, no. 8, pp. 772–777, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Fujito, O. Samura, N. Miharu, M. Tanigawa, M. Hyodo, and Y. Kudo, “Increased plasma mRNAs of placenta-specific 1 (PLAC1) and glial cells-missing 1 (GCM1) in mothers with pre-eclampsia,” Hiroshima Journal of Medical Sciences, vol. 55, no. 1, pp. 9–15, 2006. View at Google Scholar · View at Scopus
  8. A. Kotto-Kome, C. Silva, V. Whiteman, X. Kong, and M. E. Fant, “Circulating anti-PLAC1 antibodies during pregnancy and in women with reproductive failure: a preliminary analysis,” ISRN Immunology, vol. 2011, Article ID 530491, 5 pages, 2011. View at Publisher · View at Google Scholar
  9. M. Matteo, P. Greco, P. E. Levi Setti et al., “Preliminary evidence for high anti-PLAC1 antibody levels in infertile patients with repeated unexplained implantation failure,” Placenta, vol. 34, no. 4, pp. 335–339, 2013. View at Publisher · View at Google Scholar
  10. S. M. Jackman, X. Kong, and M. Fant, “Plac1 (placenta specific-1) is essential for normal placental and embryonic development,” Molecular Reproduction and Development, vol. 79, pp. 564–572, 2012. View at Publisher · View at Google Scholar
  11. V. Sitras, R. H. Paulssen, H. Grønaas, Å. Vårtun, and G. Acharya, “Gene expression profile in labouring and non-labouring human placenta near term,” Molecular Human Reproduction, vol. 14, no. 1, pp. 61–65, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. K. J. Lee, S. H. Shim, K. M. Kang et al., “Global gene expression changes induced in the human placenta during labor,” Placenta, vol. 31, no. 8, pp. 698–704, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. E. B. E. Berry, R. Eykholt, R. J. A. Helliwell, R. S. Gilmour, M. D. Mitchell, and K. W. Marvin, “Peroxisome proliferator-activated receptor isoform expression changes in human gestational tissues with labor at term,” Molecular Pharmacology, vol. 64, no. 6, pp. 1586–1590, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. S. J. Holdsworth-Carson, M. Permezel, C. Riley, G. E. Rice, and M. Lappas, “Peroxisome proliferator-activated receptors and retinoid X receptor-alpha in term human gestational tissues: tissue specific and labour-associated changes,” Placenta, vol. 30, no. 2, pp. 176–186, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Barak, Y. Sadovsky, and T. Shalom-Barak, “PPAR signaling in placental development and function,” PPAR Research, vol. 2008, Article ID 142082, 11 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. V. Sapin, P. Dollé, C. Hindelang, P. Kastner, and P. Chambon, “Defects of the chorioallantoic placenta in mouse RXRα null fetuses,” Developmental Biology, vol. 191, no. 1, pp. 29–41, 1997. View at Google Scholar · View at Scopus
  17. Y. Chen, A. Moradin, D. Schlessinger, and R. Nagaraja, “RXRα and LXR activate two promoters in placenta- and tumor-specific expression of PLAC1,” Placenta, vol. 32, no. 11, pp. 877–884, 2011. View at Publisher · View at Google Scholar · View at Scopus