Table of Contents
ISRN Gastroenterology
Volume 2013 (2013), Article ID 710856, 14 pages
http://dx.doi.org/10.1155/2013/710856
Research Article

Examination of the Anti-Inflammatory, Antioxidant, and Xenobiotic-Inducing Potential of Broccoli Extract and Various Essential Oils during a Mild DSS-Induced Colitis in Rats

Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 2, 06120 Halle (Saale), Germany

Received 9 December 2012; Accepted 20 January 2013

Academic Editors: A. Amedei, A. K. Rishi, and N. Senninger

Copyright © 2013 Kristin Mueller et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Phytogenic compounds with antioxidant and anti-inflammatory properties are currently discussed as promising complementary agents in prevention and treatment of inflammatory bowel disease (IBD). Our study aimed to evaluate possible protective and curative effects of broccoli extract (BE) and of the essential oils of turmeric (Cuo), thyme (To), and rosemary (Ro) in a rat model with a mild dextran sulphate sodium- (DSS-) induced colitis. Therefore Wistar rats were fed a diet without an additive (Con) or diets with the addition of BE, Cuo, To, and Ro during the whole experiment. Pretreatment with Ro, Cuo, and To increased the expression of the tight junction protein Cldn3. All additives reduced mRNA of VCAM-1 which plays a crucial role in the first state of inflammatory response. Only Ro pretreatment affected the expression of the antioxidant enzymes HO1, GPx2, and of glutathione-S-transferases. All additives counteracted the DSS-induced rise in COX2 and VCAM-1 expression. Colonic IL-10 was increased by Cuo, To, and Ro. During the recovery phase DSS pretreatment increased NFκB, VCAM-1, and MCP-1: This response was counter-regulated by all additives. We conclude that the phytogenic additives tested have a promising anti-inflammatory potential in vivo and a particular role in the prevention of IBD.