Table of Contents
ISRN Signal Processing
Volume 2013 (2013), Article ID 735857, 7 pages
http://dx.doi.org/10.1155/2013/735857
Research Article

NGFICA Based Digitization of Historic Inscription Images

1Electronics and Communication Engineering Department, Delhi Technological University, Formerly Delhi College of Engineering, Delhi 110042, India
2Electrical Engineering Department, Indian Institute of Technology Delhi, Delhi 110006, India

Received 28 February 2013; Accepted 8 April 2013

Academic Editors: L.-M. Cheng, W.-L. Hwang, and P.-Y. Yin

Copyright © 2013 Indu Sreedevi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. S. Kuo and M. V. Ranganath, “Real time image enhancement for both text and color photo images,” in Proceedings of the IEEE International Conference on Image Processing (ICIP '95), vol. 1, pp. 159–162, October 1995. View at Scopus
  2. C. Wolf, J.-M. Jolion, and F. Chassaing, “Text localization enhancement and binarization in multimedia documents,” in Proceedings of the 16th International Conference on Pattern Recognition (ICPR '02), vol. 4, pp. 1037–1040, September 2002.
  3. U. Garain, A. Jain, A. Maity, and B. Chanda, “Machine reading of camera-held low quality text images: an ICA-based image enhancement approach for improving OCR accuracy,” in Proceedings of the 19th International Conference on Pattern Recognition (ICPR '08), pp. 1–4, December 2008. View at Scopus
  4. X. Wen and D. Luo, “Performance comparison research of the fecg signal separation based on the bss algorithm,” Research Journal of Applied Sciences Engineering and Technology, vol. 4, no. 16, pp. 2800–2804, 2012. View at Google Scholar
  5. L. Agnihotri and N. Dimitrova, “Text detection for video analysis,” in Proceedings of IEEE International Workshop on Content-Based Access of Image and Video Libraries, pp. 109–113, June 1999.
  6. X. S. Hua, P. Yin, and H. J. Zhang, “Efficient video text recognition using multiple frame integration,” in Proceedings of the International Conference on Image Processing, vol. 2, pp. 22–25, September 2004.
  7. K. C. Kim, H. R. Byun, Y. J. Song et al., “Scene text extraction in natural scene images using hierarchical feature combining and verification,” in Proceedings of the 17th International Conference on Pattern Recognition (ICPR '04), vol. 2, pp. 679–682, gbr, August 2004. View at Scopus
  8. G. R. M. Babu, P. Srimayee, and A. Srikrishna, “Heterogenous images using mathematical morphology,” Journal of Theoretical and Applied Information Technology, vol. 15, no. 5, pp. 795–825, 2008. View at Google Scholar
  9. E. Nadernejad, S. Sharifzadeh, and H. Hassanpour, “Edge detection techniques:evaluations and comparisons,” Applied Mathematical Sciences, vol. 2, no. 31, pp. 1507–1520, 2008. View at Google Scholar
  10. M. Seeger and C. Dance, Binarising Camera Images for OCR, Xerox Research Centre, Meylan, France, 2000.
  11. S. Buzykanov, “Enhancement of poor resolution text images in the weighted sobolev space,” in Proceedings of the 19th International Conference on Systems, Signals and Image Processing (IWSSIP '12), pp. 536–539, Vienna, Austria, April 2012.
  12. B. Gangamma, K. Srikanta Murthy, and A. V. Singh, “Restoration of degraded historical document image,” Journal of Emerging Trends in Computing and Information Sciences, vol. 3, no. 5, pp. 36–39, 2012. View at Google Scholar
  13. S. Cherala and P. Rege, “Palm leaf manuscript/color document image enhancement by using improved adaptive binarization method,” in Proceedings of the 6th Indian Conference on Computer Vision, Graphics and Image Processing (ICVGIP '08), pp. 687–692, December 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. C. L. Tan, R. Cao, and P. Shen, “Restoration of archival documents using a wavelet technique,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 10, pp. 1399–1404, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. A. V. S. Rao, N. V. Rao, L. P. Reddy, G. Sunil, T. S. K. Prabhu, and A. S. C. S. Sastry, “Adaptive binarization of ancient documents,” in Proceedings of the 2nd International Conference on Machine Vision (ICMV '09), pp. 22–26, December 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Tichavský, Z. Koldovský, and E. Oja, “Performance analysis of the FastICA algorithm and Cramér-Rao bounds for linear independent component analysis,” IEEE Transactions on Signal Processing, vol. 54, no. 4, pp. 1189–1203, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Chevalier, L. Albera, P. Comon, and Ferreol, “Comparative performance analysis of eight blind source separation methods on radio communications signals,” in Proceedings of the International Joint Conference on Neural Networks, vol. 8, pp. 251–276, July 2004.
  18. S. Choi, A. Cichocki, and S. I. Amari, “Flexible independent component analysis,” Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology, vol. 26, no. 1, pp. 25–38, 2000. View at Google Scholar · View at Scopus
  19. S. Choi, “Independent component analysis,” in Proceedings of the 12th WSEAS International Conference on Communications, pp. 159–162, July 2008.
  20. S. Amari, A. Cichocki, and H. H. Yang, “A new learning algorithm for blind signal separation,” in Advances in Neural Information Processing Systems, vol. 8, pp. 752–763, MIT Press, Cambridge, Mass, USA, 1996. View at Google Scholar
  21. S. Amari and S. Douglas, Why Natural Gradient?Brain Style Information Systems, Saitama, Japan, 2001.
  22. “Optical character recognition,” http://www.onlineocr.net/.