Table of Contents
ISRN Atmospheric Sciences
Volume 2013 (2013), Article ID 738024, 8 pages
http://dx.doi.org/10.1155/2013/738024
Research Article

Connecting Turbulence and Meandering Parameterization to Describe Passive Scalars Dispersion in Low Wind Speed Conditions

1Departamento de Engenharia, Universidade Federal do Pampa (UNIPAMPA), 97650-000 Itaqui, RS, Brazil
2Departamento de Física, Universidade Federal de Santa Maria, 97110-900 Santa Maria, RS, Brazil

Received 14 September 2012; Accepted 2 October 2012

Academic Editors: C. Mangia and B. Rappenglueck

Copyright © 2013 V. S. Moreira et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The following study deals with meandering of the horizontal mean wind. The main motivation for such investigation came from the difficulty in describing contaminant dispersion in meandering conditions. Observational field measurements point out that the autocorrelation function of the horizontal wind components, obtained for the meandering cases, displays an oscillating behavior with the presence of large negative lobes. Such negative lobes are described by an equation containing functions that represent patterns of movement associated to meandering and turbulence. As a consequence, this mathematical formulation connects the turbulence and meandering phenomenon establishing the employment of hybrid parameters in models that describe the meandering dispersion. Therefore, considering this dualistic aspect between meandering and turbulence manifestations, a new set of relations for the turbulence parameterization joined with the meandering of the wind have been developed and are available. This new turbulence parameterization for a stable shear forcing planetary boundary layer, united with a meandering mean time scale is able to describe contaminant meandering enhanced spread in a low wind speed stable planetary boundary layer.