Table of Contents
ISRN Hypertension
Volume 2013, Article ID 742418, 27 pages
http://dx.doi.org/10.5402/2013/742418
Review Article

Pulmonary Hypertension Is a Probable NO/ONOO Cycle Disease: A Review

Washington State University, 638 NE 41st Avenue, Portland, OR 97232-3312, USA

Received 23 April 2012; Accepted 22 May 2012

Academic Editors: D.-P. Li and B. Waeber

Copyright © 2013 Martin L. Pall. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. L. Pall, Explaining,“Unexplained Illnesses”: Disease Paradigm for Chronic Fatigue Syndrome, Multiple Chemical Sensitivity, Fibromyalgia, Post-Traumatic Stress Disorder, Gulf War Syndrome and Others, Harrington Park Press, New York, NY, USA, 2007.
  2. M. L. Pall, “Multiple chemical sensitivity: toxicological questions and mechanisms,” in General and Applied Toxicology, B. Ballantyne, T. C. Marrs, and T. Syversen, Eds., pp. 2303–2352, John Wiley and Sons, London, UK, 3rd edition, 2009. View at Google Scholar
  3. M. L. Pall, “The NO/ONOO cycle mechanism as the cause of chronic fatigue syndrome/myalgia encephalomyelitis,” in Chronic Fatigue Syndrome: Symptoms, Causes and Prevention, E. Svoboda and K. Zelenjcik, Eds., chapter 2, Nova, New York, NY, USA, 2009. View at Google Scholar
  4. M. L. Pall, “The NO/ONOO cycle as the cause of fibromyalgia and related illnesses: etiology, explanation and effective therapy,” in New Research in Fibromyalgia, J. A. Pederson, Ed., chapter 2, pp. 39–59, Nova Science, New York, NY, USA, 2006. View at Google Scholar
  5. M. L. Pall, “Elevated, sustained peroxynitrite levels as the cause of chronic fatigue syndrome,” Medical Hypotheses, vol. 54, no. 1, pp. 115–125, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. M. L. Pall, “Common etiology of posttraumatic stress disorder, fibromyalgia, chronic fatigue syndrome and multiple chemical sensitivity via elevated nitric oxide/peroxynitrite,” Medical Hypotheses, vol. 57, no. 2, pp. 139–145, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. M. L. Pall and J. D. Satterlee, “Elevated nitric oxide/peroxynitrite mechanism for the common etiology of multiple chemical sensitivity, chronic fatigue syndrome, and posttraumatic stress disorder,” Annals of the New York Academy of Sciences, vol. 933, pp. 323–329, 2001. View at Google Scholar · View at Scopus
  8. M. L. Pall, “Nitric oxide synthase partial uncoupling as a key switching mechanism for the NO/ONOO cycle,” Medical Hypotheses, vol. 69, no. 4, pp. 821–825, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. M. L. Pall, “NMDA sensitization and stimulation by peroxynitrite, nitric oxide, and organic solvents as the mechanism of chemical sensitivity in multiple chemical sensitivity,” The FASEB Journal, vol. 16, no. 11, pp. 1407–1417, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. M. L. Pall, “How can we cure NO/ONOO cycle diseases? Approaches to curing chronic fatigue syndrome/myalgic encephalomyelitis, fibromyalgia, multiple chemical sensitivity, Gulf War syndrome and possibly many others,” Townsend Letter for Doctors and Patients, pp. 75–84, 2010. View at Google Scholar
  11. M. L. Pall and S. A. Bedient, “The NO/ONOO cycle as the etiological mechanism of tinnitus,” International Tinnitus Journal, vol. 13, no. 2, pp. 99–104, 2007. View at Google Scholar · View at Scopus
  12. J. C. Romero and J. F. Reckelhoff, “Role of angiotensin and oxidative stress in essential hypertension,” Hypertension, vol. 34, no. 4, pp. 943–949, 1999. View at Google Scholar · View at Scopus
  13. R. A. Cohen and X. Tong, “Vascular oxidative stress: the common link in hypertensive and diabetic vascular disease,” Journal of Cardiovascular Pharmacology, vol. 55, no. 4, pp. 308–316, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. T. J. Guzik, S. Mussa, D. Gastaldi et al., “Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase,” Circulation, vol. 105, no. 14, pp. 1656–1662, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Münzel, T. Gori, R. M. Bruno, and S. Taddei, “Is oxidative stress a therapeutic target in cardiovascular disease?” European Heart Journal, vol. 31, no. 22, pp. 2741–2748, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Milstien and Z. Katusic, “Oxidation of tetrahydrobiopterin by peroxynitrite: implications for vascular endothelial function,” Biochemical and Biophysical Research Communications, vol. 263, no. 3, pp. 681–684, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Crosswhite and Z. Sun, “Nitric oxide, oxidative stress and inflammation in pulmonary arterial hypertension,” Journal of Hypertension, vol. 28, no. 2, pp. 201–212, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. L. J. Janssen, “Isoprostanes and lung vascular pathology,” American Journal of Respiratory Cell and Molecular Biology, vol. 39, no. 4, pp. 383–389, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Mathew, “Inflammation and pulmonary hypertension,” Cardiology in Review, vol. 18, no. 2, pp. 67–72, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Dromparis, G. Sutendra, and E. D. Michelakis, “The role of mitochondria in pulmonary vascular remodeling,” Journal of Molecular Medicine, vol. 88, no. 10, pp. 1003–1010, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. P. M. Hassoun, L. Mouthon, J. A. Barberà et al., “Inflammation, growth factors, and pulmonary vascular remodeling,” Journal of the American College of Cardiology, vol. 54, supplement 1, pp. S10–S19, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Wedgwood and S. M. Black, “Role of reactive oxygen species in vascular remodeling associated with pulmonary hypertension,” Antioxidants and Redox Signaling, vol. 5, no. 6, pp. 759–769, 2003. View at Google Scholar · View at Scopus
  23. J. Long, M. J. Russo, C. Muller, and W. T. Vigneswaran, “Surgical treatment of pulmonary hypertension: lung transplantation,” Pulmonary Circulation, vol. 1, pp. 327–333, 2011. View at Google Scholar
  24. B. S. Goldstein, S. C. Sweet, J. Mao, C. B. Huddleston, and R. M. Grady, “Lung transplantation in children with idiopathic pulmonary arterial hypertension: an 18-year experience,” Journal of Heart and Lung Transplantation, vol. 30, pp. 1148–1152, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. E. P. Judge, A. Fabre, H. I. Adamali, and J. J. Egan, “Acute exacerbations and pulmonary hypertension in advanced idiopathic pulmonary fibrosis,” The European Respiratory Journal, vol. 40, no. 1, pp. 93–100, 2012. View at Google Scholar
  26. V. Hampl, J. Bíbová, A. Baňasová et al., “Pulmonary vascular iNOS induction participates in the onset of chronic hypoxic pulmonary hypertension,” American Journal of Physiology, vol. 290, no. 1, pp. L11–L20, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. S. A. Lorch, R. Foust, A. Gow et al., “Immunohistochemical localization of protein 3-nitrotyrosine and S- nitrosocysteine in a murine model of inhaled nitric oxide therapy,” Pediatric Research, vol. 47, no. 6, pp. 798–805, 2000. View at Google Scholar · View at Scopus
  28. R. Bowers, C. Cool, R. C. Murphy et al., “Oxidative stress in severe pulmonary hypertension,” American Journal of Respiratory and Critical Care Medicine, vol. 169, no. 6, pp. 764–769, 2004. View at Google Scholar · View at Scopus
  29. R. H. Foxton, J. M. Land, and S. J. R. Heales, “Tetrahydrobiopterin availability in Parkinson's and Alzheimer's disease; potential pathogenic mechanisms,” Neurochemical Research, vol. 32, no. 4-5, pp. 751–756, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. J. S. Beckman and J. P. Crow, “Pathological implications of nitric oxide, superoxide and peroxynitrite formation,” Biochemical Society Transactions, vol. 21, no. 2, pp. 330–334, 1993. View at Google Scholar · View at Scopus
  31. W. H. Koppenol, J. J. Moreno, W. A. Pryor, H. Ischiropoulos, and J. S. Beckman, “Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide,” Chemical Research in Toxicology, vol. 5, no. 6, pp. 834–842, 1992. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Hattori, K. Kasai, and S. S. Gross, “NO suppresses while peroxynitrite sustains NF-κB: a paradigm to rationalize cytoprotective and cytotoxic actions attributed to NO,” Cardiovascular Research, vol. 63, no. 1, pp. 31–40, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. G. Gloire, S. Legrand-Poels, and J. Piette, “NF-κB activation by reactive oxygen species: fifteen years later,” Biochemical Pharmacology, vol. 72, no. 11, pp. 1493–1505, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. C. L. M. Cooke and S. T. Davidge, “Peroxynitrite increases iNOS through NF-κB and decreases prostacyclin synthase in endothelial cells,” American Journal of Physiology, vol. 282, no. 2, pp. C395–C402, 2002. View at Google Scholar · View at Scopus
  35. S. V. Lymar, R. F. Khairutdinov, and J. K. Hurst, “Hydroxyl radical formation by O–O bond homolysis in peroxynitrous acid,” Inorganic Chemistry, vol. 42, no. 17, pp. 5259–5266, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Radi, “Nitric oxide, oxidants, and protein tyrosine nitration,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 12, pp. 4003–4008, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. M. W. Janssen-Heininger, M. E. Poynter, and P. A. Baeuerle, “Recent advances towards understanding redox mechanisms in the activation of nuclear factor κB,” Free Radical Biology and Medicine, vol. 28, no. 9, pp. 1317–1327, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. R. C. J. Langen, A. M. W. J. Schols, M. C. J. M. Kelders, E. F. M. Wouters, and Y. M. W. Janssen-Heininger, “Inflammatory cytokines inhibit myogenic differentiation through activation of nuclear factor-κB,” The FASEB Journal, vol. 15, no. 7, pp. 1169–1180, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. Y. J. Surh, K. S. Chun, H. H. Cha et al., “Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-κB activation,” Mutation Research, vol. 480-481, pp. 243–268, 2001. View at Google Scholar · View at Scopus
  40. S. C. Chu, J. Marks-Konczalik, H. P. Wu, T. C. Banks, and J. Moss, “Analysis of the cytokine-stimulated human inducible nitric oxide synthase (iNOS) gene: characterization of differences between human and mouse iNOS promoters,” Biochemical and Biophysical Research Communications, vol. 248, no. 3, pp. 871–878, 1998. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Jaiswal, N. F. LaRusso, L. J. Burgart, and G. J. Gores, “Inflammatory cytokines induce DNA damage and inhibit DNA repair in cholangiocarcinoma cells by a nitric oxide-dependent mechanism,” Cancer Research, vol. 60, no. 1, pp. 184–190, 2000. View at Google Scholar · View at Scopus
  42. C. Melchiorri, R. Meliconi, L. Frizziero et al., “Enhanced and coordinated in vivo expression of inflammatory cytokines and nitric oxide synthase in chondrocytes from patients with osteoarthritis,” Arthritis and Rheumatism, vol. 41, pp. 2165–2174, 1998. View at Google Scholar
  43. Y. Gutiérrez-Martín, F. J. Martín-Romero, F. Henao, and C. Gutiérrez-Merino, “Synaptosomal plasma membrane Ca2+ pump activity inhibition by repetitive micromolar ONOO pulses,” Free Radical Biology and Medicine, vol. 32, no. 1, pp. 46–55, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Gao, D. Yin, Y. Yao, T. D. Williams, and T. C. Squier, “Progressive decline in the ability of calmodulin isolated from aged brain to activate the plasma membrane Ca-ATPase,” Biochemistry, vol. 37, no. 26, pp. 9536–9548, 1998. View at Publisher · View at Google Scholar · View at Scopus
  45. C. R. Hoyal, A. P. Thomas, and H. J. Forman, “Hydroperoxide-induced increases in intracellular calcium due to annexin VI translocation and inactivation of plasma membrane Ca2+-ATPase,” Journal of Biological Chemistry, vol. 271, no. 46, pp. 29205–29210, 1996. View at Publisher · View at Google Scholar · View at Scopus
  46. D. Yin, K. Kuczera, and T. C. Squier, “The sensitivity of carboxyl-terminal methionines in calmodulin isoforms to oxidation by H2O2 modulates the ability to activate the plasma membrane Ca-ATPase,” Chemical Research in Toxicology, vol. 13, no. 2, pp. 103–110, 2000. View at Publisher · View at Google Scholar · View at Scopus
  47. R. K. Bartlett, R. J. B. Urbauer, A. Anbanandam, H. S. Smallwood, J. L. Urbauer, and T. C. Squier, “Oxidation of Met144 and Met145 in calmodulin blocks calmodulin dependent activation of the plasma membrane Ca-ATPase,” Biochemistry, vol. 42, no. 11, pp. 3231–3238, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. M. P. Kurnellas, A. Nicot, G. E. Shull, and S. Elkabes, “Plasma membrane calcium ATPase deficiency causes neuronal pathology in the spinal cord: a potential mechanism for neurodegeneration in multiple sclerosis and spinal cord injury,” The FASEB Journal, vol. 19, no. 2, pp. 298–300, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. B. Khodorov, “Glutamate-induced deregulation of calcium homeostasis and mitochondrial dysfunction in mammalian central neurones,” Progress in Biophysics and Molecular Biology, vol. 86, no. 2, pp. 279–351, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. A. C. Rego and C. R. Oliveira, “Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: Implications for the pathogenesis of neurodegenerative diseases,” Neurochemical Research, vol. 28, no. 10, pp. 1563–1574, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. J. T. Greenamyre, G. MacKenzie, T. I. Peng, and S. E. Stephans, “Mitochondrial dysfunction in Parkinson's disease,” Biochemical Society Symposium, vol. 66, pp. 85–97, 1999. View at Google Scholar · View at Scopus
  52. F. Buttgereit and M. D. Brand, “A hierarchy of ATP-consuming processes in mammalian cells,” Biochemical Journal, vol. 312, no. 1, pp. 163–167, 1995. View at Google Scholar · View at Scopus
  53. P. S. Brookes, Y. Yoon, J. L. Robotham, M. W. Anders, and S. S. Sheu, “Calcium, ATP, and ROS: a mitochondrial love-hate triangle,” American Journal of Physiology, vol. 287, no. 4, pp. C817–C833, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. P. Pacher and C. Szabo, “Role of the peroxynitrite-poly(ADP-ribose) polymerase pathway in human disease,” American Journal of Pathology, vol. 173, no. 1, pp. 2–13, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. C. T. Taylor and S. Moncada, “Nitric oxide, cytochrome C oxidase, and the cellular response to hypoxia,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, no. 4, pp. 643–647, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. J. J. Poderoso, “The formation of peroxynitrite in the applied physiology of mitochondrial nitric oxide,” Archives of Biochemistry and Biophysics, vol. 484, no. 2, pp. 214–220, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. P. V. Finocchietto, M. C. Franco, S. Holod et al., “Mitochondrial nitric oxide synthase: a masterpiece of metabolic adaptation, cell growth, transformation, and death,” Experimental Biology and Medicine, vol. 234, no. 9, pp. 1020–1028, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. S. Moncada and J. P. Bolaños, “Nitric oxide, cell bioenergetics and neurodegeneration,” Journal of Neurochemistry, vol. 97, no. 6, pp. 1676–1689, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. I. Wiswedel, A. Gardemann, A. Storch, D. Peter, and L. Schild, “Degradation of phospholipids by oxidative stress—exceptional significance of cardiolipin,” Free Radical Research, vol. 44, no. 2, pp. 135–145, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. H. Bayir, V. A. Tyurin, Y. Y. Tyurina et al., “Selective early cardiolipin peroxidation after traumatic brain injury: an oxidative lipidomics analysis,” Annals of Neurology, vol. 62, no. 2, pp. 154–169, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. S. Pope, J. M. Land, and S. J. R. Heales, “Oxidative stress and mitochondrial dysfunction in neurodegeneration; cardiolipin a critical target?” Biochimica et Biophysica Acta, vol. 1777, no. 7-8, pp. 794–799, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. G. Paradies, G. Petrosillo, V. Paradies, and F. M. Ruggiero, “Role of cardiolipin peroxidation and Ca2+ in mitochondrial dysfunction and disease,” Cell Calcium, vol. 45, no. 6, pp. 643–650, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. L. A. Macmillan-Crow, J. P. Crow, J. D. Kerby, J. S. Beckman, and J. A. Thompson, “Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 21, pp. 11853–11858, 1996. View at Publisher · View at Google Scholar · View at Scopus
  64. L. A. MacMillan-Crow, J. P. Crow, and J. A. Thompson, “Peroxynitrite-mediated inactivation of manganese superoxide dismutase involves nitration and oxidation of critical tyrosine residues,” Biochemistry, vol. 37, no. 6, pp. 1613–1622, 1998. View at Publisher · View at Google Scholar · View at Scopus
  65. V. Demicheli, C. Quijano, B. Alvarez, and R. Radi, “Inactivation and nitration of human superoxide dismutase (SOD) by fluxes of nitric oxide and superoxide,” Free Radical Biology and Medicine, vol. 42, no. 9, pp. 1359–1368, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. E. Cadenas and K. J. A. Davies, “Mitochondrial free radical generation, oxidative stress, and aging,” Free Radical Biology and Medicine, vol. 29, no. 3-4, pp. 222–230, 2000. View at Publisher · View at Google Scholar · View at Scopus
  67. C. E. Berry and J. M. Hare, “Xanthine oxidoreductase and cardiovascular disease: molecular mechanisms and pathophysiological implications,” Journal of Physiology, vol. 555, pp. 589–606, 2004. View at Publisher · View at Google Scholar · View at Scopus
  68. G. C. Brown and J. J. Neher, “Inflammatory neurodegeneration and mechanisms of microglial killing of neurons,” Molecular Neurobiology, vol. 41, no. 2-3, pp. 242–247, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. A. M. Briones and R. M. Touyz, “Oxidative stress and hypertension: current concepts,” Current Hypertension Reports, vol. 12, no. 2, pp. 135–142, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. A. L. Perraud, C. L. Takanishi, B. Shen et al., “Accumulation of free ADP-ribose from mitochondria mediates oxidative stress-induced gating of TRPM2 cation channels,” Journal of Biological Chemistry, vol. 280, no. 7, pp. 6138–6148, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Kolisek, A. Beck, A. Fleig, and R. Penner, “Cyclic ADP-ribose and hydrogen peroxide synergize with ADP-ribose in the activation of TRPM2 channels,” Molecular Cell, vol. 18, no. 1, pp. 61–69, 2005. View at Publisher · View at Google Scholar · View at Scopus
  72. B. F. Bessac and S. E. Jordt, “Breathtaking TRP channels: tRPA1 and TRPV1 in airway chemosensation and reflex control,” Physiology, vol. 23, no. 6, pp. 360–370, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. M. Trevisani, J. Siemens, S. Materazzi et al., “4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 33, pp. 13519–13524, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. D. A. Andersson, C. Gentry, S. Moss, and S. Bevan, “Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress,” Journal of Neuroscience, vol. 28, no. 10, pp. 2485–2494, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. T. Yoshida, R. Inoue, T. Morii et al., “Nitric oxide activates TRP channels by cysteine S-nitrosylation,” Nature Chemical Biology, vol. 2, no. 11, pp. 596–607, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. M. L. Pall and J. H. Anderson, “The vanilloid receptor as a putative target of diverse chemicals in multiple chemical sensitivity,” Archives of Environmental Health, vol. 59, no. 7, pp. 363–375, 2004. View at Publisher · View at Google Scholar · View at Scopus
  77. D. P. Li, S. R. Chen, and H. L. Pan, “VR1 receptor activation induces glutamate release and postsynaptic firing in the paraventricular nucleus,” Journal of Neurophysiology, vol. 92, no. 3, pp. 1807–1816, 2004. View at Publisher · View at Google Scholar · View at Scopus
  78. C. P. Bailey, K. A. Maubach, and R. S. G. Jones, “Neurokinin-1 receptors in the rat nucleus tractus solitarius: pre- and postsynaptic modulation of glutamate and GABA release,” Neuroscience, vol. 127, no. 2, pp. 467–479, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. J. Kamei, H. Tanihara, H. Igarashi, and Y. Kasuya, “Effects of N-methyl-D-aspartate antagonists on the cough reflex,” European Journal of Pharmacology, vol. 168, no. 2, pp. 153–158, 1989. View at Google Scholar · View at Scopus
  80. T. J. Coderre and R. Melzack, “Central neural mediators of secondary hyperalgesia following heat injury in rats: neuropeptides and excitatory amino acids,” Neuroscience Letters, vol. 131, no. 1, pp. 71–74, 1991. View at Publisher · View at Google Scholar · View at Scopus
  81. P. M. Dougherty and W. D. Willis, “Enhanced responses of spinothalamic tract neurons to excitatory amino acids accompany capsaicin-induced sensitization in the monkey,” Journal of Neuroscience, vol. 12, no. 3, pp. 883–894, 1992. View at Google Scholar · View at Scopus
  82. O. K. Andersen, S. Felsby, L. Nicolaisen, P. Bjerring, T. S. Jensen, and L. Arendt-Nielsen, “The effect of Ketamine on stimulation of primary and secondary hyperalgesic areas induced by capsaicin—a double-blind, placebo-controlled, human experimental study,” Pain, vol. 66, no. 1, pp. 51–62, 1996. View at Publisher · View at Google Scholar · View at Scopus
  83. N. F. Sethna, M. Liu, R. Gracely, G. J. Bennett, and M. B. Max, “Analgesic and cognitive effects of intravenous ketamine-alfentanil combinations versus either drug alone after intradermal capsaicin in normal subjects,” Anesthesia and Analgesia, vol. 86, no. 6, pp. 1250–1256, 1998. View at Publisher · View at Google Scholar · View at Scopus
  84. D. D. Mitsikostas, M. Sanchez del Rio, C. Waeber, M. A. Moskowitz, and F. M. Cutrer, “The NMDA receptor antagonist MK-801 reduces capsaicin-induced C-fos expression within rat trigeminal nucleus caudalis,” Pain, vol. 76, no. 1-2, pp. 239–248, 1998. View at Publisher · View at Google Scholar · View at Scopus
  85. T. Kawamata, K. Omote, M. Toriyabe, M. Kawamata, and A. Namiki, “Involvement of capsaicin-sensitive fibers in spinal NMDA-induced glutamate release,” NeuroReport, vol. 12, no. 16, pp. 3447–3450, 2001. View at Google Scholar · View at Scopus
  86. A. Dray, “Neuropharmacological mechanisms of capsaicin and related substances,” Biochemical Pharmacology, vol. 44, no. 4, pp. 611–615, 1992. View at Publisher · View at Google Scholar · View at Scopus
  87. E. Palazzo, V. de Novellis, I. Marabese et al., “Interaction between vanilloid and glutamate receptors in the central modulation of nociception,” European Journal of Pharmacology, vol. 439, no. 1–3, pp. 69–75, 2002. View at Publisher · View at Google Scholar · View at Scopus
  88. D. K. Lam, B. J. Sessle, B. E. Cairns, and J. W. Hu, “Peripheral NMDA receptor modulation of jaw muscle electromyographic activity induced by capsaicin injection into the temporomandibular joint of rats,” Brain Research, vol. 1046, no. 1-2, pp. 68–76, 2005. View at Publisher · View at Google Scholar · View at Scopus
  89. C. R. McNamara, J. Mandel-Brehm, D. M. Bautista et al., “TRPA1 mediates formalin-induced pain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 33, pp. 13525–13530, 2007. View at Publisher · View at Google Scholar · View at Scopus
  90. L. H. Piao, T. Fujita, C. Y. Jiang et al., “TRPA1 activation by lidocaine in nerve terminals results in glutamate release increase,” Biochemical and Biophysical Research Communications, vol. 379, no. 4, pp. 980–984, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. M. Kosugi, T. Nakatsuka, T. Fujita, Y. Kuroda, and E. Kumamoto, “Activation of TRPA1 channel facilitates excitatory synaptic transmission in substantia gelatinosa neurons of the adult rat spinal cord,” Journal of Neuroscience, vol. 27, no. 16, pp. 4443–4451, 2007. View at Publisher · View at Google Scholar · View at Scopus
  92. M. Scott, T. Gomeza, Z. Dinga, and B. Robert, “Differential behavioral effect of the TRPM8/TRPA1 channel agonist icilin (AG-3-5),” European Journal of Pharmacology, vol. 575, no. 1–3, pp. 103–104, 2007. View at Publisher · View at Google Scholar · View at Scopus
  93. J. Werkheiser, A. Cowan, T. Gomez et al., “Icilin-induced wet-dog shakes in rats are dependent on NMDA receptor activation and nitric oxide production,” Pharmacology Biochemistry and Behavior, vol. 92, no. 3, pp. 543–548, 2009. View at Publisher · View at Google Scholar · View at Scopus
  94. Z. Ding, A. Cowan, and S. M. Rawls, “Icilin induces a hyperthermia in rats that is dependent on nitric oxide production and NMDA receptor activation,” European Journal of Pharmacology, vol. 578, no. 2-3, pp. 201–208, 2008. View at Publisher · View at Google Scholar · View at Scopus
  95. T. Yokoyama, T. Ohbuchi, T. Saito et al., “Allyl isothiocyanates and cinnamaldehyde potentiate miniature excitatory postsynaptic inputs in the supraoptic nucleus in rats,” European Journal of Pharmacology, vol. 655, no. 1–3, pp. 31–37, 2011. View at Publisher · View at Google Scholar · View at Scopus
  96. C. J. Proudfoot, E. M. Garry, D. F. Cottrell et al., “Analgesia mediated by the TRPM8 cold receptor in chronic neuropathic pain,” Current Biology, vol. 16, no. 16, pp. 1591–1605, 2006. View at Publisher · View at Google Scholar · View at Scopus
  97. D. Penaloza and J. Arias-Stella, “The heart and pulmonary circulation at high altitudes: healthy highlanders and chronic mountain sickness,” Circulation, vol. 115, no. 9, pp. 1132–1146, 2007. View at Publisher · View at Google Scholar · View at Scopus
  98. X. Q. Xu and Z. C. Jing, “High-altitude pulmonary hypertension,” European Respiratory Review, vol. 18, pp. 13–17, 2009. View at Google Scholar
  99. C. V. Remillard and J. X. J. Yuan, “High altitude pulmonary hypertension: role of K+ and Ca2+ channels,” High Altitude Medicine and Biology, vol. 6, no. 2, pp. 133–146, 2005. View at Publisher · View at Google Scholar · View at Scopus
  100. T. N. Holt and R. J. Callan, “Pulmonary arterial pressure testing for high mountain disease in cattle,” Veterinary Clinics of North America, vol. 23, no. 3, pp. 575–596, 2007. View at Publisher · View at Google Scholar · View at Scopus
  101. G. L. Colice, N. Hill, Y. J. Lee et al., “Exaggerated pulmonary hypertension with monocrotaline in rats susceptible to chronic mountain sickness,” Journal of Applied Physiology, vol. 83, no. 1, pp. 25–31, 1997. View at Google Scholar · View at Scopus
  102. J. P. Khoo, L. Zhao, N. J. Alp et al., “Pivotal role for endothelial tetrahydrobiopterin in pulmonary hypertension,” Circulation, vol. 111, no. 16, pp. 2126–2133, 2005. View at Publisher · View at Google Scholar · View at Scopus
  103. I. Fantozzi, S. Zhang, O. Platoshyn, C. V. Remillard, R. T. Cowling, and J. X. J. Yuan, “Hypoxia increases AP-1 binding activity by enhancing capacitative Ca2+ entry in human pulmonary artery endothelial cells,” American Journal of Physiology, vol. 285, no. 6, pp. L1233–L1245, 2003. View at Google Scholar · View at Scopus
  104. P. Bartsch, M. Maggiorini, M. Ritter, C. Noti, P. Vock, and O. Oelz, “Prevention of high-altitude pulmonary edema by nifedipine,” The New England Journal of Medicine, vol. 325, no. 18, pp. 1284–1289, 1991. View at Google Scholar · View at Scopus
  105. Y. X. Wang, J. Wang, C. Wang et al., “Functional expression of transient receptor potential vanilloid-related channels in chronically hypoxic human pulmonary arterial smooth muscle cells,” Journal of Membrane Biology, vol. 223, no. 3, pp. 151–159, 2008. View at Publisher · View at Google Scholar · View at Scopus
  106. L. A. Palmer, G. L. Semenza, M. H. Stoler, and R. A. Johns, “Hypoxia induces type II NOS gene expression in pulmonary artery endothelial cells via HIF-1,” American Journal of Physiology, vol. 274, no. 2, pp. L212–L219, 1998. View at Google Scholar · View at Scopus
  107. A. E. Loot and I. Fleming, “Cytochrome P450-derived epoxyeicosatrienoic acids and pulmonary hypertension: central role of transient receptor potential C6 channels,” Journal of Cardiovascular Pharmacology, vol. 57, no. 2, pp. 140–147, 2011. View at Publisher · View at Google Scholar · View at Scopus
  108. S. Goerre, M. Wenk, P. Bärtsch et al., “Endothelin-1 in pulmonary hypertension associated with high-altitude exposure,” Circulation, vol. 91, no. 2, pp. 359–364, 1995. View at Google Scholar · View at Scopus
  109. C. D. Cool, N. F. Voelkel, and T. Bull, “Viral infection and pulmonary hypertension: is there an association?” Expert Review of Respiratory Medicine, vol. 5, no. 2, pp. 207–216, 2011. View at Publisher · View at Google Scholar · View at Scopus
  110. S. Cicalini, P. Chinello, and N. Petrosillo, “HIV infection and pulmonary arterial hypertension,” Expert Review of Respiratory Medicine, vol. 5, no. 2, pp. 257–266, 2011. View at Publisher · View at Google Scholar · View at Scopus
  111. P. Y. Hsue, S. G. Deeks, H. H. Farah et al., “Role of HIV and human herpesvirus-8 infection in pulmonary arterial hypertension,” AIDS, vol. 22, no. 7, pp. 825–833, 2008. View at Publisher · View at Google Scholar · View at Scopus
  112. T. M. Bull, C. A. Meadows, C. D. Coldren et al., “Human herpesvirus-8 infection of primary pulmonary microvascular endothelial cells,” American Journal of Respiratory Cell and Molecular Biology, vol. 39, no. 6, pp. 706–716, 2008. View at Publisher · View at Google Scholar · View at Scopus
  113. S. Janda, B. S. Quon, and J. Swiston, “HIV and pulmonary arterial hypertension: a systematic review,” HIV Medicine, vol. 11, no. 10, pp. 620–634, 2010. View at Publisher · View at Google Scholar · View at Scopus
  114. A. Talwar, P. Sarkar, and M. J. Rosen, “Pulmonary arterial hypertension in human immunodeficiency virus infection,” Postgraduate Medicine, vol. 121, no. 5, pp. 56–67, 2009. View at Publisher · View at Google Scholar · View at Scopus
  115. A. Cota-Gomez, A. C. Flores, X.-F. Ling, M. Varella-Garcia, and S. C. Flores, “HIV-1 Tat increases oxidant burden in the lungs of transgenic mice,” Free Radical Biology and Medicine, vol. 51, no. 9, pp. 1697–1707, 2011. View at Publisher · View at Google Scholar · View at Scopus
  116. C. Tcherakian, É. Rivaud, É. Catherinot, D. Zucman, A.-C. Metivier, and L.-J. Couderc, “Pulmonary arterial hypertension related to HIV: is inflammation related to IL-6 the cornerstone?” Revue de Pneumologie Clinique, vol. 67, no. 4, pp. 250–257, 2011. View at Publisher · View at Google Scholar · View at Scopus
  117. J.-L. Lü, J. Nurko, J. Jiang et al., “Nordihydroguaiaretic acid (NDGA) inhibits ritonavir-induced endothelial dysfunction in porcine pulmonary arteries,” Medical Science Monitor, vol. 17, no. 11, pp. BR312–BR318, 2011. View at Google Scholar · View at Scopus
  118. S. M. Weakley, J. Jiang, J. Lü et al., “Natural antioxidant dihydroxybenzyl alcohol blocks ritonavir-induced endothelial dysfunction in porcine pulmonary arteries and human endothelial cells,” Medical Science Monitor, vol. 17, no. 9, pp. BR235–BR241, 2011. View at Google Scholar · View at Scopus
  119. C. Cheng, X. Wang, S. M. Weakley et al., “The soybean isoflavonoid equol blocks ritonavir-induced endothelial dysfunction in porcine pulmonary arteries and human pulmonary artery endothelial cells,” Journal of Nutrition, vol. 140, no. 1, pp. 12–17, 2010. View at Publisher · View at Google Scholar · View at Scopus
  120. H. Chai, S. Yan, P. Lin, A. B. Lumsden, Q. Yao, and C. Chen, “Curcumin blocks HIV protease inhibitor ritonavir-induced vascular dysfunction in porcine coronary arteries,” Journal of the American College of Surgeons, vol. 200, no. 6, pp. 820–830, 2005. View at Publisher · View at Google Scholar · View at Scopus
  121. W. Deng, L. Baki, J. Yin, H. Zhou, and C. M. Baumgarten, “HIV protease inhibitors elicit volume-sensitive Cl current in cardiac myocytes via mitochondrial ROS,” Journal of Molecular and Cellular Cardiology, vol. 49, no. 5, pp. 746–752, 2010. View at Publisher · View at Google Scholar · View at Scopus
  122. Z. Vyslouzil, J. Polak, J. Widimsky, and M. Sukova, “Pathogenesis of pulmonary hypertension in tuberculosis,” Czechoslovak Medicine, vol. 3, no. 2, pp. 123–131, 1980. View at Google Scholar · View at Scopus
  123. A. E. H. Ahmed, A. S. Ibrahim, and S. M. Elshafie, “Pulmonary hypertension in patients with treated pulmonary tuberculosis: analysis of 14 consecutive cases,” Clinical Medicine Insights, vol. 5, no. 1, pp. 1–5, 2011. View at Publisher · View at Google Scholar · View at Scopus
  124. K. Machida and R. Maekura, “State of the art: sequelae of tuberculosis,” Kekkaku, vol. 80, no. 10, pp. 655–674, 2005. View at Google Scholar · View at Scopus
  125. E. D. Chan, K. R. Morris, J. T. Belisle et al., “Induction of inducible nitric oxide synthase-NO* by lipoarabinomannan of Mycobacterium tuberculosis is mediated by MEK1-ERK, MKK7-JNK, and NF-κB signaling pathways,” Infection and Immunity, vol. 69, no. 4, pp. 2001–2010, 2001. View at Publisher · View at Google Scholar · View at Scopus
  126. A. M. Siore, R. E. Parker, A. A. Stecenko et al., “Endotoxin-induced acute lung injury requires interaction with the liver,” American Journal of Physiology, vol. 289, no. 5, pp. L769–L776, 2005. View at Publisher · View at Google Scholar · View at Scopus
  127. M. Lipcsey, E. Söderberg, S. Basu et al., “F-2-isoprostane, inflammation, cardiac function and oxygenation in the endotoxaemic pig,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 78, no. 3, pp. 209–217, 2008. View at Publisher · View at Google Scholar · View at Scopus
  128. P. K. Gonzalez, J. Zhuang, S. R. Doctrow et al., “Role of oxidant stress in the adult respiratory distress syndrome: evaluation of a novel antioxidant strategy in a porcine model of endotoxin-induced acute lung injury,” Shock, vol. 6, supplement 6, pp. S23–S26, 1996. View at Google Scholar · View at Scopus
  129. R. H. Demling, M. Smith, R. Gunther, and T. Wandzilak, “Endotoxin-induced lung injury in unanesthetized sheep: effect of methylprednisolone,” Circulatory Shock, vol. 8, no. 3, pp. 351–360, 1981. View at Google Scholar · View at Scopus
  130. C. Boer, A. B. J. Groeneveld, G. J. Scheffer, J. J. De Lange, N. Westerhof, and P. Sipkema, “Induced nitric oxide impairs relaxation but not contraction in endotoxin-exposed rat pulmonary arteries,” Journal of Surgical Research, vol. 127, no. 2, pp. 197–202, 2005. View at Publisher · View at Google Scholar · View at Scopus
  131. R. Rodrigo, O. Cauli, J. Boix, N. ElMlili, A. Agusti, and V. Felipo, “Role of NMDA receptors in acute liver failure and ammonia toxicity: therapeutical implications,” Neurochemistry International, vol. 55, no. 1–3, pp. 113–118, 2009. View at Publisher · View at Google Scholar · View at Scopus
  132. P. Monfort, E. Kosenko, S. Erceg, J. J. Canales, and V. Felipo, “Molecular mechanism of acute ammonia toxicity: role of NMDA receptors,” Neurochemistry International, vol. 41, no. 2-3, pp. 95–102, 2002. View at Publisher · View at Google Scholar · View at Scopus
  133. C. Rose, “Increased extracellular brain glutamate in acute liver failure: decreased uptake or increased release?” Metabolic Brain Disease, vol. 17, no. 4, pp. 251–261, 2002. View at Publisher · View at Google Scholar · View at Scopus
  134. P. Gustin, B. Urbain, J. F. Prouvost, and M. Ansay, “Effects of atmospheric ammonia on pulmonary hemodynamics and vascular permeability in pigs: interaction with endotoxins,” Toxicology and Applied Pharmacology, vol. 125, no. 1, pp. 17–26, 1994. View at Publisher · View at Google Scholar · View at Scopus
  135. J. C. Leung, B. R. Travis, J. W. Verlander et al., “Expression and developmental regulation of the NMDA receptor subunits in the kidney and cardiovascular system,” American Journal of Physiology, vol. 283, no. 4, pp. R964–R971, 2002. View at Google Scholar · View at Scopus
  136. T. Nassar, K. Bdeir, S. Yarovoi et al., “tPA regulates pulmonary vascular activity through NMDA receptors,” American Journal of Physiology, vol. 301, no. 3, pp. L307–L314, 2011. View at Publisher · View at Google Scholar · View at Scopus
  137. R. Ben-Abraham, M. Guttman, R. Flaishon, N. Marouani, D. Niv, and A. A. Weinbroum, “Mesenteric artery clamping/unclamping-induced acute lung injury is attenuated by N-methyl-D-aspartate antagonist dextromethorphan,” Lung, vol. 184, no. 6, pp. 309–317, 2006. View at Publisher · View at Google Scholar · View at Scopus
  138. A. C. Arroliga, S. Sandur, D. W. Jacobsen et al., “Association between hyperhomocysteinemia and primary pulmonary hypertension,” Respiratory Medicine, vol. 97, no. 7, pp. 825–829, 2003. View at Publisher · View at Google Scholar · View at Scopus
  139. I. H. Ozerol, F. A. Pac, E. Ozerol et al., “Plasma endothelin-1, homocysteine and serum nitric oxide values in patients with left-to-right shunt,” Indian Heart Journal, vol. 56, no. 6, pp. 653–657, 2004. View at Google Scholar · View at Scopus
  140. S. Szamosi, Z. Csiki, E. Szomják et al., “Plasma homocysteine levels, the prevalence of methylenetetrahydrofolate reductase gene C677T polymorphism and macrovascular disorders in systemic sclerosis: risk factors for accelerated macrovascular damage?” Clinical Reviews in Allergy and Immunology, vol. 36, no. 2-3, pp. 145–149, 2009. View at Publisher · View at Google Scholar · View at Scopus
  141. P. H. Rolland, A. Friggi, A. Barlatier et al., “Hyperhomocysteinemia-induced vascular damage in the minipig: captopril-hydrochlorothiazide combination prevents elastic alterations,” Circulation, vol. 91, no. 4, pp. 1161–1174, 1995. View at Google Scholar · View at Scopus
  142. L. B. R. Zocrato, L. S. A. Capettini, B. A. Rezende et al., “Increased expression of endothelial iNOS accounts for hyporesponsiveness of pulmonary artery to vasoconstrictors after paraquat poisoning,” Toxicology in Vitro, vol. 24, no. 3, pp. 1019–1025, 2010. View at Publisher · View at Google Scholar · View at Scopus
  143. M. Singh, V. Murthy, and C. Ramassamy, “Standardized extracts of Bacopa monniera protects against MPP+ and paraquat induce-toxicities by modulation mitochondrial activities, proteasomal functions and redox pathways,” Toxicological Sciences, vol. 125, no. 1, pp. 219–232, 2012. View at Google Scholar
  144. A. Czerniczyniec, A. G. Karadayian, J. Bustamante, R. A. Cutrera, and S. Lores-Arnaiz, “Paraquat induces behavioral changes and cortical and striatal mitochondrial dysfunction,” Free Radical Biology and Medicine, vol. 51, pp. 1428–1436, 2011. View at Publisher · View at Google Scholar · View at Scopus
  145. K. Shimizu, K. Matsubara, K. I. Ohtaki, and H. Shiono, “Paraquat leads to dopaminergic neural vulnerability in organotypic midbrain culture,” Neuroscience Research, vol. 46, no. 4, pp. 523–532, 2003. View at Publisher · View at Google Scholar · View at Scopus
  146. E. N. Mangano, D. Litteljohn, R. So et al., “Interferon-γ plays a role in paraquat-induced neurodegeneration involving oxidative and proinflammatory pathways,” Neurobiology of Aging, vol. 33, no. 7, pp. 1411–1426, 2011. View at Publisher · View at Google Scholar · View at Scopus
  147. A. F. Fernandes, J. Zhou, X. Zhang et al., “Oxidative inactivation of the proteasome in retinal pigment epithelial cells: a potential link between oxidative stress and up-regulation of interleukin-8,” Journal of Biological Chemistry, vol. 283, no. 30, pp. 20745–20753, 2008. View at Publisher · View at Google Scholar · View at Scopus
  148. S. L. Chow, V. Chandran, R. Fazelzad, and S. R. Johnson, “Prognostic factors for survival in systemic lupus erythematosus associated pulmonary hypertension,” Lupus, vol. 21, no. 4, pp. 353–364, 2012. View at Publisher · View at Google Scholar · View at Scopus
  149. J. G. Coghlan, J. Pope, and C. P. Denton, “Assessment of endpoints in pulmonary arterial hypertension associated with connective tissue disease,” Current Opinion in Pulmonary Medicine, vol. 16, supplement 1, pp. S27–S34, 2010. View at Publisher · View at Google Scholar · View at Scopus
  150. I. Koniari, S. N. Siminelakis, N. G. Baikoussis, G. Papadopoulos, J. Goudevenos, and E. Apostolakis, “Antiphospholipid syndrome; its implication in cardiovascular diseases: a review,” Journal of Cardiothoracic Surgery, vol. 5, no. 1, article 101, 2010. View at Publisher · View at Google Scholar · View at Scopus
  151. S. R. Johnson and J. T. Granton, “Pulmonary hypertension in systemic sclerosis and systemic lupus erythematosus,” European Respiratory Review, vol. 20, no. 122, pp. 277–286, 2011. View at Publisher · View at Google Scholar · View at Scopus
  152. R. Ahmad, Z. Rasheed, and H. Ahsan, “Biochemical and cellular toxicology of peroxynitrite: implications in cell death and autoimmune phenomenon,” Immunopharmacology and Immunotoxicology, vol. 31, no. 3, pp. 388–396, 2009. View at Publisher · View at Google Scholar · View at Scopus
  153. M. Humbert, “Pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension: pathophysiology,” European Respiratory Review, vol. 19, no. 115, pp. 59–63, 2010. View at Publisher · View at Google Scholar · View at Scopus
  154. K. L. Lane, M. Talati, E. Austin et al., “Oxidative injury is a common consequence of BMPR2 mutations,” Pulmonary Circulation, vol. 1, pp. 72–83, 2011. View at Google Scholar
  155. M. D. Bear, M. Li, Y. Liu, M. A. Giel-Moloney, B. L. Fanburg, and D. Toksoz, “The Lbc Rho guanine nucleotide exchange factor/α-catulin axis functions in serotonin-induced vascular smooth muscle cell mitogenesis and RhoA/ROCK activation,” Journal of Biological Chemistry, vol. 285, no. 43, pp. 32919–32926, 2010. View at Publisher · View at Google Scholar · View at Scopus
  156. X. Y. Chen, J. N. Dun, Q. F. Miao, and Y. J. Zhang, “Fasudil hydrochloride hydrate, a Rho-kinase inhibitor, suppresses 5-hydroxytryptamine-induced pulmonary artery smooth muscle cell proliferation via JNK and ERK1/2 pathway,” Pharmacology, vol. 83, no. 2, pp. 67–79, 2009. View at Publisher · View at Google Scholar · View at Scopus
  157. D. A. Zopf, L . A. D. Neves, K. J. Nikula, J. Huang, P. B. Senese, and M. R. Gralinski, “C-122, a novel antagonist of serotonin receptor 5-HT2B, prevents monocrotaline-induced pulmonary arterial hypertension in rats,” European Journal of Pharmacology, vol. 670, no. 1, pp. 195–203, 2011. View at Publisher · View at Google Scholar · View at Scopus
  158. M. R. MacLean and Y. Dempsie, “The serotonin hypothesis of pulmonary hypertension revisited,” Advances in Experimental Medicine and Biology, vol. 661, pp. 309–322, 2010. View at Publisher · View at Google Scholar · View at Scopus
  159. Y. Dempsie, I. Morecroft, D. J. Welsh et al., “Converging evidence in support of the serotonin hypothesis of dexfenfluramine-induced pulmonary hypertension with novel transgenic mice,” Circulation, vol. 117, no. 22, pp. 2928–2937, 2008. View at Publisher · View at Google Scholar · View at Scopus
  160. C. M. Villalón and D. Centurión, “Cardiovascular responses produced by 5-hydroxytriptamine:a pharmacological update on the receptors/mechanisms involved and therapeutic implications,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 376, no. 1-2, pp. 45–63, 2007. View at Google Scholar · View at Scopus
  161. N. Desbuards, D. Antier, G. Y. Rochefort et al., “Dexfenfluramine discontinuous treatment does not worsen hypoxia-induced pulmonary vascular remodeling but activates RhoA/ROCK pathway: consequences on pulmonary hypertension,” European Journal of Pharmacology, vol. 602, no. 2-3, pp. 355–363, 2009. View at Publisher · View at Google Scholar · View at Scopus
  162. A. R. Hemnes, A. Zaiman, and H. C. Champion, “PDE5A inhibition attenuates bleomycin-induced pulmonary fibrosis and pulmonary hypertension through inhibition of ROS generation and RhoA/Rho kinase activation,” American Journal of Physiology, vol. 294, no. 1, pp. L24–L33, 2008. View at Publisher · View at Google Scholar · View at Scopus
  163. L. C. Price, D. Montani, C. Tcherakian et al., “Dexamethasone reverses monocrotaline-induced pulmonary arterial hypertension in rats,” European Respiratory Journal, vol. 37, no. 4, pp. 813–822, 2011. View at Publisher · View at Google Scholar · View at Scopus
  164. M. Oka, N. Homma, and I. F. McMurtry, “Rho kinase-mediated vasoconstriction in rat models of pulmonary hypertension,” Methods in Enzymology, vol. 439, pp. 191–204, 2008. View at Publisher · View at Google Scholar · View at Scopus
  165. I. F. McMurtry, K. Abe, H. Ota, K. A. Fagan, and M. Oka, “Rho kinase-mediated vasoconstriction in pulmonary hypertension,” Advances in Experimental Medicine and Biology, vol. 661, pp. 299–308, 2010. View at Publisher · View at Google Scholar · View at Scopus
  166. M. J. Connolly and P. I. Aaronson, “Key role of the RhoA/Rho kinase system in pulmonary hypertension,” Pulmonary Pharmacology and Therapeutics, vol. 24, no. 1, pp. 1–14, 2011. View at Publisher · View at Google Scholar · View at Scopus
  167. M. Thomas, “Pharmacological targets for pulmonary vascular disease: vasodilation versus anti-remodelling,” Advances in Experimental Medicine and Biology, vol. 661, pp. 475–490, 2010. View at Publisher · View at Google Scholar · View at Scopus
  168. S. Shimizu, M. Tahara, S. Ogata et al., “Involvement of nuclear factor-kB activation through RhoA/Rho-kinase pathway in LPS-induced IL-8 production in human cervical stromal cells,” Molecular Human Reproduction, vol. 13, no. 3, pp. 181–187, 2007. View at Publisher · View at Google Scholar · View at Scopus
  169. K. Goto, Y. Chiba, K. Matsusue et al., “The proximal STAT6 and NF-κB sites are responsible for IL-13- and TNF-α-induced RhoA transcriptions in human bronchial smooth muscle cells,” Pharmacological Research, vol. 61, no. 5, pp. 466–472, 2010. View at Publisher · View at Google Scholar · View at Scopus
  170. K. Goto, Y. Chiba, H. Sakai, and M. Misawa, “Mechanism of inhibitory effect of prednisolone on RhoA upregulation in human bronchial smooth muscle cells,” Biological and Pharmaceutical Bulletin, vol. 33, no. 4, pp. 710–713, 2010. View at Publisher · View at Google Scholar · View at Scopus
  171. E. Kakiashvili, Q. Dan, M. Vandermeer et al., “The epidermal growth factor receptor mediates tumor necrosis factor-α-induced activation of the ERK/GEF-H1/RhoA pathway in tubular epithelium,” Journal of Biological Chemistry, vol. 286, no. 11, pp. 9268–9279, 2011. View at Publisher · View at Google Scholar · View at Scopus
  172. J. Peng, F. He, C. Zhang, X. Deng, and F. Yin, “Protein kinase C-α signals P115RhoGEF phosphorylation and RhoA activation in TNF-α-induced mouse brain microvascular endothelial cell barrier dysfunction,” Journal of Neuroinflammation, vol. 8, article 28, 2011. View at Publisher · View at Google Scholar · View at Scopus
  173. T. Nakakuki, M. Ito, H. Iwasaki et al., “Rho/Rho-kinase pathway contributes to C-reactive protein-induced plasminogen activator inhibitor-1 expression in endothelial cells,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 25, no. 10, pp. 2088–2093, 2005. View at Publisher · View at Google Scholar · View at Scopus
  174. L. Jin, Z. Ying, and R. C. Webb, “Activation of Rho/Rho kinase signaling pathway by reactive oxygen species in rat aorta,” American Journal of Physiology, vol. 287, no. 4, pp. H1495–H1500, 2004. View at Publisher · View at Google Scholar · View at Scopus
  175. S. Ryoo, A. Bhunia, F. Chang, A. Shoukas, D. E. Berkowitz, and L. H. Romer, “OxLDL-dependent activation of arginase II is dependent on the LOX-1 receptor and downstream RhoA signaling,” Atherosclerosis, vol. 214, no. 2, pp. 279–287, 2011. View at Publisher · View at Google Scholar · View at Scopus
  176. S. Chandra, M. J. Romero, A. Shatanawi, A. M. Alkilany, R. B. Caldwell, and R. W. Caldwell, “Oxidative species increase arginase activity in endothelial cells through the RhoA/Rho kinase pathway,” British Journal of Pharmacology, vol. 165, no. 2, pp. 506–519, 2012. View at Publisher · View at Google Scholar · View at Scopus
  177. T. C. Resta, B. R. S. Broughton, and N. L. Jernigan, “Reactive oxygen species and RhoA signaling in vascular smooth muscle: role in chronic hypoxia-induced pulmonary hypertension,” Advances in Experimental Medicine and Biology, vol. 661, pp. 355–373, 2010. View at Publisher · View at Google Scholar · View at Scopus
  178. B. R. S. Broughton, N. L. Jernigan, C. E. Norton, B. R. Walker, and T. C. Resta, “Chronic hypoxia augments depolarization-induced Ca2+ sensitization in pulmonary vascular smooth muscle through superoxide-dependent stimulation of RhoA,” American Journal of Physiology, vol. 298, no. 2, pp. L232–L242, 2010. View at Publisher · View at Google Scholar · View at Scopus
  179. J. Ren, J. Duan, D. P. Thomas et al., “IGF-I alleviates diabetes-induced RhoA activation, eNOS uncoupling, and myocardial dysfunction,” American Journal of Physiology, vol. 294, no. 3, pp. R793–R802, 2008. View at Publisher · View at Google Scholar · View at Scopus
  180. L. Yao, M. J. Romero, H. A. Toque, G. Yang, R. B. Caldwell, and R. W. Caldwell, “The role of RhoA/Rho kinase pathway in endothelial dysfunction,” Journal of Cardiovascular Disease Research, vol. 1, no. 4, pp. 165–170, 2010. View at Publisher · View at Google Scholar · View at Scopus
  181. L. Zhao, X. Wang, Q. Chang et al., “Neferine, a bisbenzylisoquinline alkaloid attenuates bleomycin-induced pulmonary fibrosis,” European Journal of Pharmacology, vol. 627, no. 1–3, pp. 304–312, 2010. View at Publisher · View at Google Scholar · View at Scopus
  182. F. Dong, S. Soubeyrand, and R. J. G. Haché, “Activation of PARP-1 in response to bleomycin depends on the Ku antigen and protein phosphatase 5,” Oncogene, vol. 29, no. 14, pp. 2093–2103, 2010. View at Publisher · View at Google Scholar · View at Scopus
  183. O. Mungunsukh, A. J. Griffin, Y. H. Lee, and R. M. Day, “Bleomycin induces the extrinsic apoptotic pathway in pulmonary endothelial cells,” American Journal of Physiology, vol. 298, no. 5, pp. L696–L703, 2010. View at Publisher · View at Google Scholar · View at Scopus
  184. V. G. Desai, A. Aidoo, J. Li, L. E. Lyn-Cook, D. A. Casciano, and R. J. Feuers, “Effects of bleomycin on liver antioxidant enzymes and the electron transport system from ad libitum-fed and dietary-restricted female and male Fischer 344 rats,” Nutrition and Cancer, vol. 36, no. 1, pp. 42–51, 2000. View at Google Scholar · View at Scopus
  185. Z. Van Rheen, C. Fattman, S. Domarski et al., “Lung extracellular superoxide dismutase overexpression lessens bleomycin-induced pulmonary hypertension and vascular remodeling,” American Journal of Respiratory Cell and Molecular Biology, vol. 44, no. 4, pp. 500–508, 2011. View at Publisher · View at Google Scholar · View at Scopus
  186. S. I. Said, S. A. Hamidi, K. G. Dickman et al., “Moderate pulmonary arterial hypertension in male mice lacking the vasoactive intestinal peptide gene,” Circulation, vol. 115, no. 10, pp. 1260–1268, 2007. View at Publisher · View at Google Scholar · View at Scopus
  187. S. A. Hamidi, S. Prabhakar, and S. I. Said, “Enhancement of pulmonary vascular remodelling and inflammatory genes with VIP gene deletion,” European Respiratory Journal, vol. 31, no. 1, pp. 135–139, 2008. View at Publisher · View at Google Scholar · View at Scopus
  188. S. A. Hamidi, R. Z. Lin, A. M. Szema, S. Lyubsky, Y. P. Jiang, and S. I. Said, “VIP and endothelin receptor antagonist: an effective combination against experimental pulmonary arterial hypertension,” Respiratory Research, vol. 12, article 141, 2011. View at Publisher · View at Google Scholar · View at Scopus
  189. P. Z. Anastasiadis, L. Bezin, L. J. Gordon, B. Imerman, J. Blitz, and R. A. Levine, “Vasoactive intestinal peptide induces both tyrosine hydroxylase activity and tetrahydrobiopterin biosynthesis in PC12 cells,” Neuroscience, vol. 86, no. 1, pp. 179–189, 1998. View at Publisher · View at Google Scholar · View at Scopus
  190. X. Z. Shi and S. K. Sarna, “Homeostatic and therapeutic roles of VIP in smooth muscle function: Myo-neuroimmune interactions,” American Journal of Physiology, vol. 297, no. 4, pp. G716–G725, 2009. View at Publisher · View at Google Scholar · View at Scopus
  191. R. Yu, H. Zhang, L. Huang, X. Liu, and J. Chen, “Anti-hyperglycemic, antioxidant and anti-inflammatory effects of VIP and a VPAC1 agonist on streptozotocin-induced diabetic mice,” Peptides, vol. 32, no. 2, pp. 216–222, 2011. View at Publisher · View at Google Scholar · View at Scopus
  192. M. Nandi, A. Miller, R. Stidwill et al., “Pulmonary hypertension in a GTP-cyclohydrolase 1-deficient mouse,” Circulation, vol. 111, no. 16, pp. 2086–2090, 2005. View at Publisher · View at Google Scholar · View at Scopus
  193. J. Belik, B. A. S. McIntyre, M. Enomoto, J. Pan, H. Grasemann, and J. Vasquez-Vivar, “Pulmonary hypertension in the newborn GTP cyclohydrolase I-deficient mouse,” Free Radical Biology and Medicine, vol. 51, no. 12, pp. 2227–2233, 2011. View at Publisher · View at Google Scholar · View at Scopus
  194. L. V. d'Uscio, “ENOS uncoupling in pulmonary hypertension,” Cardiovascular Research, vol. 92, no. 3, pp. 359–360, 2011. View at Publisher · View at Google Scholar · View at Scopus
  195. M. Yanagisawa, H. Kurihara, S. Kimura et al., “A novel potent vasoconstrictor peptide produced by vascular endothelial cells,” Nature, vol. 332, no. 6163, pp. 411–415, 1988. View at Google Scholar · View at Scopus
  196. M. La and J. J. Reid, “Endothelin-1 and the regulation of vascular tone,” Clinical and Experimental Pharmacology and Physiology, vol. 22, no. 5, pp. 315–323, 1995. View at Google Scholar · View at Scopus
  197. A. Giaid, M. Yanagisawa, D. Langleben et al., “Expression of endothelin-1 in the lungs of patients with pulmonary hypertension,” The New England Journal of Medicine, vol. 328, no. 24, pp. 1732–1739, 1993. View at Publisher · View at Google Scholar · View at Scopus
  198. R. N. Channick, G. Simonneau, O. Sitbon et al., “Effects of the dual endothelin-receptor antagonist bosentan in patients with pulmonary hypertension: a randomised placebo-controlled study,” The Lancet, vol. 358, no. 9288, pp. 1119–1123, 2001. View at Publisher · View at Google Scholar · View at Scopus
  199. M. Woods, D. Bishop-Bailey, J. R. Pepper, T. W. Evans, J. A. Mitchell, and T. D. Warner, “Cytokine and lipopolysaccharide stimulation of endothelin-1 release from human internal mammary artery and saphenous vein smooth-muscle cells,” Journal of Cardiovascular Pharmacology, vol. 31, supplement 1, pp. S348–S350, 1998. View at Google Scholar · View at Scopus
  200. M. Woods, J. A. Mitchell, E. G. Wood et al., “Endothelin-1 is induced by cytokines in human vascular smooth muscle cells: evidence for intracellular endothelin-converting enzyme,” Molecular Pharmacology, vol. 55, no. 5, pp. 902–909, 1999. View at Google Scholar · View at Scopus
  201. S. Narayan, G. Prasanna, R. R. Krishnamoorthy, X. Zhang, and T. Yorio, “Endothelin-1 synthesis and secretion in human retinal pigment epithelial cells (ARPE-19): differential regulation by cholinergics and TNF-alpha,” Investigative Ophthalmology and Visual Science, vol. 44, no. 11, pp. 4885–4894, 2003. View at Publisher · View at Google Scholar · View at Scopus
  202. J. Ruef, M. Moser, W. Kübler, and C. Bode, “Induction of endothelin-1 expression by oxidative stress in vascular smooth muscle cells,” Cardiovascular Pathology, vol. 10, no. 6, pp. 311–315, 2001. View at Publisher · View at Google Scholar · View at Scopus
  203. S. J. An, R. Boyd, M. Zhu, A. Chapman, D. R. Pimentel, and H. D. Wang, “NADPH oxidase mediates angiotensin II-induced endothelin-1 expression in vascular adventitial fibroblasts,” Cardiovascular Research, vol. 75, no. 4, pp. 702–709, 2007. View at Publisher · View at Google Scholar · View at Scopus
  204. R. Jiménez, R. López-Sepúlveda, M. Kadmiri et al., “Polyphenols restore endothelial function in DOCA-salt hypertension: role of endothelin-1 and NADPH oxidase,” Free Radical Biology and Medicine, vol. 43, no. 3, pp. 462–473, 2007. View at Publisher · View at Google Scholar · View at Scopus
  205. M. Woods, E. G. Wood, S. C. Bardswell et al., “Role for nuclear factor-κB and signal transducer and activator of transcription 1/interferon regulatory factor-1 in cytokine-induced endothelin-1 release in human vascular smooth muscle cells,” Molecular Pharmacology, vol. 64, no. 4, pp. 923–931, 2003. View at Publisher · View at Google Scholar · View at Scopus
  206. P. Henno, C. Maurey, C. Danel et al., “Pulmonary vascular dysfunction in endstage cystic fibrosis: role of NF-κB and endothelin-1,” European Respiratory Journal, vol. 34, no. 6, pp. 1329–1337, 2009. View at Publisher · View at Google Scholar · View at Scopus
  207. D. N. Müller, A. Fiebeler, J. K. Park, R. Dechend, and F. C. Luft, “Angiotensin II and endothelin induce inflammation and thereby promote hypertension-induced end-organ damage,” Clinical Nephrology, vol. 60, supplement 1, pp. S2–S12, 2003. View at Google Scholar · View at Scopus
  208. D. Ramzy, V. Rao, L. C. Tumiati et al., “Tetrahydrobiopterin prevents cyclosporine-induced vasomotor dysfunction,” Transplantation, vol. 79, no. 8, pp. 876–881, 2005. View at Publisher · View at Google Scholar · View at Scopus
  209. V. A. Ohanyan, G. Guarini, C. K. Thodeti et al., “Endothelin-mediated in vivo pressor responses following TRPV1 activation,” American Journal of Physiology, vol. 301, no. 3, pp. H1135–H1142, 2011. View at Publisher · View at Google Scholar · View at Scopus
  210. C. Xie and D. H. Wang, “Ablation of transient receptor potential vanilloid 1 abolishes endothelin-induced increases in afferent renal nerve activity: mechanisms and functional significance,” Hypertension, vol. 54, no. 6, pp. 1298–1305, 2009. View at Publisher · View at Google Scholar · View at Scopus
  211. H. B. He, D. Z. Dai, and Y. Dai, “CPU0213, a novel endothelin receptor antagonist, ameliorates septic renal lesion by suppressing ET system and NF-κB in rats,” Acta Pharmacologica Sinica, vol. 27, no. 9, pp. 1213–1221, 2006. View at Publisher · View at Google Scholar · View at Scopus
  212. S. Wedgwood, D. M. McMullan, J. M. Bekker, J. R. Fineman, and S. M. Black, “Role for endothelin-1-induced superoxide and peroxynitrite production in rebound pulmonary hypertension associated with inhaled nitric oxide therapy,” Circulation Research, vol. 89, no. 4, pp. 357–364, 2001. View at Google Scholar · View at Scopus
  213. M. Romero, R. Jiménez, M. Sánchez et al., “Quercetin inhibits vascular superoxide production induced by endothelin-1: role of NADPH oxidase, uncoupled eNOS and PKC,” Atherosclerosis, vol. 202, no. 1, pp. 58–67, 2009. View at Publisher · View at Google Scholar · View at Scopus
  214. E. D. Loomis, J. C. Sullivan, D. A. Osmond, D. M. Pollock, and J. S. Pollock, “Endothelin mediates superoxide production and vasoconstriction through activation of NADPH oxidase and uncoupled nitric-oxide synthase in the rat aorta,” Journal of Pharmacology and Experimental Therapeutics, vol. 315, no. 3, pp. 1058–1064, 2005. View at Publisher · View at Google Scholar · View at Scopus
  215. J. S. Zheng, X. Q. Yang, K. J. Lookingland et al., “Gene transfer of human guanosine 5′-triphosphate cyclohydrolase I restores vascular tetrahydrobiopterin level and endothelial function in low renin hypertension,” Circulation, vol. 108, no. 10, pp. 1238–1245, 2003. View at Publisher · View at Google Scholar · View at Scopus
  216. R. H. Steinhorn, J. A. Russell, S. Lakshminrusimha, S. F. Gugino, S. M. Black, and J. R. Fineman, “Altered endothelium-dependent relaxations in lambs with high pulmonary blood flow and pulmonary hypertension,” American Journal of Physiology, vol. 280, no. 1, pp. H311–H317, 2001. View at Google Scholar · View at Scopus
  217. H. J. Xia, D. Z. Dai, and Y. Dai, “Up-regulated inflammatory factors endothelin, NFκB, TNFα and iNOS involved in exaggerated cardiac arrhythmias in l-thyroxine-induced cardiomyopathy are suppressed by darusentan in rats,” Life Sciences, vol. 79, no. 19, pp. 1812–1819, 2006. View at Publisher · View at Google Scholar · View at Scopus
  218. K. Sato, D. M. Rodman, and I. F. McMurtry, “Hypoxia inhibits increased ET(B) receptor-mediated NO synthesis in hypertensive rat lungs,” American Journal of Physiology, vol. 276, no. 4, pp. L571–L581, 1999. View at Google Scholar · View at Scopus
  219. J. Hirahashi, T. Nakaki, K. Hishikawa et al., “Endothelin-1 inhibits induction of nitric oxide synthase and GTP cyclohydrolase I in rat mesangial cells,” Pharmacology, vol. 53, no. 4, pp. 241–249, 1996. View at Google Scholar · View at Scopus
  220. Y.-L. Lin, R.-J. Lin, K.-P. Shen et al., “Baicalein, isolated from Scutellaria baicalensis, protects against endothelin-1-induced pulmonary artery smooth muscle cell proliferation via inhibition of TRPC1 channel expression,” Journal of Ethnopharmacology, vol. 138, no. 2, pp. 373–381, 2011. View at Publisher · View at Google Scholar · View at Scopus
  221. J. Liang, H. Bi, and W. Ji, “Involvement of TRPA1 in ET-1-induced pain-like behavior in mice,” NeuroReport, vol. 21, no. 3, pp. 201–205, 2010. View at Publisher · View at Google Scholar · View at Scopus
  222. J. A. Murphy, M. L. Archibald, W. H. Baldridge, and B. C. Chauhan, “Endothelin-1-induced proliferation is reduced and Ca2+ signaling is enhanced in endothelin B-deficient optic nerve head astrocytes,” Investigative Ophthalmology and Visual Science, vol. 52, no. 10, pp. 7771–7777, 2011. View at Google Scholar · View at Scopus
  223. G. Bkaily, S. Choufani, L. Avedanian et al., “Nonpeptidic antagonists of ETA and ETB receptors reverse the ET-1-induced sustained increase of cytosolic and nuclear calcium in human aortic vascular smooth muscle cells,” Canadian Journal of Physiology and Pharmacology, vol. 86, no. 8, pp. 546–556, 2008. View at Publisher · View at Google Scholar · View at Scopus
  224. S. de Frutos, J. M. R. Diaz, C. H. Nitta, M. L. Sherpa, and L. V. Bosc, “Endothelin-1 contributes to increased NFATc3 activation by chronic hypoxia in pulmonary arteries,” American Journal of Physiology, vol. 301, no. 2, pp. C441–C450, 2011. View at Publisher · View at Google Scholar · View at Scopus
  225. Y. Liu, E. S. Ji, S. Xiang et al., “Exposure to cyclic intermittent hypoxia increases expression of functional NMDA receptors in the rat carotid body,” Journal of Applied Physiology, vol. 106, no. 1, pp. 259–267, 2009. View at Publisher · View at Google Scholar · View at Scopus
  226. S. Moyanova, L. Kortenska, and R. Mitreva, “Endothelin-1-induced cerebral ischemia: effects of ketanserin and MK-801 on limb placing in rats,” International Journal of Neuroscience, vol. 117, no. 9, pp. 1361–1381, 2007. View at Publisher · View at Google Scholar · View at Scopus
  227. W. Deng, L. Baki, and C. M. Baumgarten, “Endothelin signalling regulates volume-sensitive Cl current via NADPH oxidase and mitochondrial reactive oxygen species,” Cardiovascular Research, vol. 88, no. 1, pp. 93–100, 2010. View at Publisher · View at Google Scholar · View at Scopus
  228. V. C. De Giusti, M. V. Correa, M. C. Villa-Abrille et al., “The positive inotropic effect of endothelin-1 is mediated by mitochondrial reactive oxygen species,” Life Sciences, vol. 83, no. 7-8, pp. 264–271, 2008. View at Publisher · View at Google Scholar · View at Scopus
  229. K. F. Beck, M. G. Mohaupt, and R. B. Sterzel, “Endothelin-1 inhibits cytokine-stimulated transcription of inducible nitric oxide synthase in glomerular mesangial cells,” Kidney International, vol. 48, no. 6, pp. 1893–1899, 1995. View at Google Scholar · View at Scopus
  230. M. Yoshida, N. Nakanishi, X. Wang, and Y. Hattori, “Exogenous biopterins requirement for iNOS function in vascular smooth muscle cells,” Journal of Cardiovascular Pharmacology, vol. 42, no. 2, pp. 197–203, 2003. View at Publisher · View at Google Scholar · View at Scopus
  231. S. Lakshminrusimha, J. A. Russell, S. Wedgwood et al., “Superoxide dismutase improves oxygenation and reduces oxidation in neonatal pulmonary hypertension,” American Journal of Respiratory and Critical Care Medicine, vol. 174, no. 12, pp. 1370–1377, 2006. View at Publisher · View at Google Scholar · View at Scopus
  232. J. Herget, J. Wilhelm, J. Novotná et al., “A possible role of the oxidant tissue injury in the development of hypoxic pulmonary hypertension,” Physiological Research, vol. 49, no. 5, pp. 493–501, 2000. View at Google Scholar · View at Scopus
  233. N. Weissmann, R. T. Schermuly, H. A. Ghofrani et al., “Hypoxic pulmonary vasoconstriction—triggered by an increase in reactive oxygen species?” Novartis Foundation Symposium, vol. 272, pp. 196–208, 2006. View at Google Scholar · View at Scopus
  234. P. Dorfmüller, M.-C. Chaumais, M. Giannakouli et al., “Increased oxidative stress and severe arterial remodeling induced by permanent high-flow challenge in experimental pulmonary hypertension,” Respiratory Research, vol. 12, Article ID 119, 2011. View at Publisher · View at Google Scholar · View at Scopus
  235. M. Rashid, A. Kotwani, and M. Fahim, “Long lasting phosphodiesterase 5 inhibitor, tadalafil, and superoxide dismutase mimic, tempol, protect against hypoxia-induced pulmonary hypertension in rats,” Human and Experimental Toxicology, vol. 31, no. 6, pp. 626–636, 2012. View at Google Scholar
  236. X. Lu, T. C. Murphy, M. S. Nanes, and C. M. Hart, “PPARγ regulates hypoxia-induced Nox4 expression in human pulmonary artery smooth muscle cells through NF-κB,” American Journal of Physiology, vol. 299, no. 4, pp. L559–L566, 2010. View at Publisher · View at Google Scholar · View at Scopus
  237. P. Oishi, A. Grobe, E. Benavidez et al., “Inhaled nitric oxide induced NOS inhibition and rebound pulmonary hypertension: a role for superoxide and peroxynitrite in the intact lamb,” American Journal of Physiology, vol. 290, no. 2, pp. L359–L366, 2006. View at Publisher · View at Google Scholar · View at Scopus
  238. E. O. Agbani, P. Coats, and R. M. Wadsworth, “Acute hypoxia stimulates intracellular peroxynitrite formation associated with pulmonary artery smooth muscle cell proliferation,” Journal of Cardiovascular Pharmacology, vol. 57, no. 5, pp. 584–588, 2011. View at Publisher · View at Google Scholar · View at Scopus
  239. S. Aggarwal, C. M. Gross, S. Kumar et al., “Attenuated vasodilatation in lambs with endogenous and exogenous activation of cGMP signaling: role of protein kinase G nitration,” Journal of Cellular Physiology, vol. 226, no. 12, pp. 3104–3113, 2011. View at Publisher · View at Google Scholar · View at Scopus
  240. E. O. Agbani, P. Coats, A. Mills, and R. M. Wadsworth, “Peroxynitrite stimulates pulmonary artery endothelial and smooth muscle cell proliferation: involvement of ERK and PKC,” Pulmonary Pharmacology and Therapeutics, vol. 24, no. 1, pp. 100–109, 2011. View at Publisher · View at Google Scholar · View at Scopus
  241. J. Belik, D. Stevens, J. Pan et al., “Pulmonary vascular and cardiac effects of peroxynitrite decomposition in newborn rats,” Free Radical Biology and Medicine, vol. 49, no. 8, pp. 1306–1314, 2010. View at Publisher · View at Google Scholar · View at Scopus
  242. A. Masood, R. Belcastro, J. Li, C. Kantores, R. P. Jankov, and A. K. Tanswell, “A peroxynitrite decomposition catalyst prevents 60% O2-mediated rat chronic neonatal lung injury,” Free Radical Biology and Medicine, vol. 49, no. 7, pp. 1182–1191, 2010. View at Publisher · View at Google Scholar · View at Scopus
  243. Z. Q. Liu, B. Liu, L. Yu, X. Q. Wang, J. Wang, and H. M. Liu, “Simvastatin has beneficial effect on pulmonary artery hypertension by inhibiting NF-κB expression,” Molecular and Cellular Biochemistry, vol. 354, no. 1-2, pp. 77–82, 2011. View at Publisher · View at Google Scholar · View at Scopus
  244. J. Li, J. J. Li, J. G. He, J. L. Nan, Y. L. Guo, and C. M. Xiong, “Atorvastatin decreases C-reactive protein-induced inflammatory response in pulmonary artery smooth muscle cells by inhibiting nuclear factor-κb pathway,” Cardiovascular Therapeutics, vol. 28, no. 1, pp. 8–14, 2010. View at Publisher · View at Google Scholar · View at Scopus
  245. S. Kimura, K. Egashira, L. Chen et al., “Nanoparticle-mediated delivery of nuclear factor KB decoy into lungs ameliorates monocrotaline-induced pulmonary arterial hypertension,” Hypertension, vol. 53, no. 5, pp. 877–883, 2009. View at Publisher · View at Google Scholar · View at Scopus
  246. H. Sawada, Y. Mitani, J. Maruyama et al., “A nuclear factor-κB inhibitor pyrrolidine dithiocarbamate ameliorates pulmonary hypertension in rats,” Chest, vol. 132, no. 4, pp. 1265–1274, 2007. View at Publisher · View at Google Scholar · View at Scopus
  247. J. Huang, P. M. Kaminski, J. G. Edwards et al., “Pyrrolidine dithiocarbamate restores endothelial cell membrane integrity and attenuates monocrotaline-induced pulmonary artery hypertension,” American Journal of Physiology, vol. 294, no. 6, pp. L1250–L1259, 2008. View at Publisher · View at Google Scholar · View at Scopus
  248. M. V. Autieri, T. L. Yue, G. Z. Ferstein, and E. Ohlstein, “Antisense oligonucleotides to the p65 subunit of NF-κB inhibit human vascular smooth muscle cell adherence and proliferation and prevent neointima formation in rat carotid arteries,” Biochemical and Biophysical Research Communications, vol. 213, no. 3, pp. 827–836, 1995. View at Publisher · View at Google Scholar · View at Scopus
  249. B. S. Zuckerbraun, C. A. McCloskey, R. S. Mahidhara, P. K. M. Kim, B. S. Taylor, and E. Tzeng, “Overexpression of mutated IκBα inhibits vascular smooth muscle cell proliferation and intimal hyperplasia formation,” Journal of Vascular Surgery, vol. 38, no. 4, pp. 812–819, 2003. View at Publisher · View at Google Scholar · View at Scopus
  250. E. Soon, A. M. Holmes, C. M. Treacy et al., “Elevated levels of inflammatory cytokines predict survival in idiopathic and familial pulmonary arterial hypertension,” Circulation, vol. 122, no. 9, pp. 920–927, 2010. View at Publisher · View at Google Scholar · View at Scopus
  251. M. Li, S. R. Riddle, M. G. Frid et al., “Emergence of fibroblasts with a proinflammatory epigenetically altered phenotype in severe hypoxic pulmonary hypertension,” Journal of Immunology, vol. 187, no. 5, pp. 2711–2722, 2011. View at Publisher · View at Google Scholar · View at Scopus
  252. T. M. Yu, Y. H. Chen, J. Y. Hsu et al., “Systemic inflammation is associated with pulmonary hypertension in patients undergoing haemodialysis,” Nephrology Dialysis Transplantation, vol. 24, no. 6, pp. 1946–1951, 2009. View at Publisher · View at Google Scholar · View at Scopus
  253. D. D. Sin and S. F. P. Man, “Is systemic inflammation responsible for pulmonary hypertension in COPD?” Chest, vol. 130, no. 2, pp. 310–312, 2006. View at Publisher · View at Google Scholar · View at Scopus
  254. K. R. Hamal, R. F. Wideman, N. B. Anthony, and G. F. Erf, “Differential gene expression of proinflammatory chemokines and cytokines in lungs of ascites-resistant and -susceptible broiler chickens following intravenous cellulose microparticle injection,” Veterinary Immunology and Immunopathology, vol. 133, no. 2–4, pp. 250–255, 2010. View at Publisher · View at Google Scholar · View at Scopus
  255. N. F. Voelkel, R. M. Tuder, J. Bridges, and W. P. Arend, “Interleukin-1 receptor antagonist treatment reduces pulmonary hypertension generated in rats by monocrotaline,” American Journal of Respiratory Cell and Molecular Biology, vol. 11, no. 6, pp. 664–675, 1994. View at Google Scholar · View at Scopus
  256. A. A. Wanderer, “Rationale for IL-1β targeted therapy for ischemia-reperfusion induced pulmonary and other complications in sickle cell disease,” Journal of Pediatric Hematology/Oncology, vol. 31, no. 8, pp. 537–538, 2009. View at Publisher · View at Google Scholar · View at Scopus
  257. G. N. Kalambokis, A. Mouzaki, M. Rodi, K. Pappas, P. Korantzopoulos, and E. V. Tsianos, “Serum interleukin 6 levels and cirrhosis-associated pulmonary hypertension,” Angiology, vol. 62, no. 4, pp. 344–345, 2011. View at Publisher · View at Google Scholar · View at Scopus
  258. A. Chaouat, L. Savale, C. Chouaid et al., “Role for interleukin-6 in COPD-related pulmonary hypertension,” Chest, vol. 136, no. 3, pp. 678–687, 2009. View at Publisher · View at Google Scholar · View at Scopus
  259. Y. Furuya, T. Satoh, and M. Kuwana, “Interleukin-6 as a potential therapeutic target for pulmonary arterial hypertension,” International Journal of Rheumatology, vol. 2010, Article ID 720305, 2010. View at Publisher · View at Google Scholar · View at Scopus
  260. M. K. Steiner, O. L. Syrkina, N. Kolliputi, E. J. Mark, C. A. Hales, and A. B. Waxman, “Interleukin-6 overexpression induces pulmonary hypertension,” Circulation Research, vol. 104, no. 2, pp. 236–244, 2009. View at Publisher · View at Google Scholar · View at Scopus
  261. M. Seimetz, N. Parajuli, A. Pichl et al., “Inducible NOS inhibition reverses tobacco-smoke-induced emphysema and pulmonary hypertension in mice,” Cell, vol. 147, no. 2, pp. 293–305, 2011. View at Publisher · View at Google Scholar · View at Scopus
  262. J. Moral-Sanz, C. Menendez, L. Moreno, E. Moreno, A. Cogolludo, and F. Perez-Vizcaino, “Pulmonary arterial dysfunction in insulin resistant obese Zucker rats,” Respiratory Research, vol. 12, article 51, 2011. View at Publisher · View at Google Scholar · View at Scopus
  263. T. P. Shanley, B. Zhao, D. R. Macariola, A. Denenberg, A. L. Salzman, and P. A. Ward, “Role of nitric oxide in acute lung inflammation: lessons learned from the inducible nitric oxide synthase knockout mouse,” Critical Care Medicine, vol. 30, no. 9, pp. 1960–1968, 2002. View at Google Scholar · View at Scopus
  264. G. Sutendra, P. Dromparis, P. Wright et al., “The role of nogo and the mitochondria-endoplasmic reticulum unit in pulmonary hypertension,” Science Translational Medicine, vol. 3, no. 88, Article ID 88ra55, 2011. View at Publisher · View at Google Scholar · View at Scopus
  265. K. N. Farrow, S. Wedgwood, K. J. Lee et al., “Mitochondrial oxidant stress increases PDE5 activity in persistent pulmonary hypertension of the newborn,” Respiratory Physiology and Neurobiology, vol. 174, no. 3, pp. 272–281, 2010. View at Publisher · View at Google Scholar · View at Scopus
  266. J. Rehman and S. L. Archer, “A proposed mitochondrial-metabolic mechanism for initiation and maintenance of pulmonary arterial hypertension in fawn-hooded rats: the warburg model of pulmonary arterial hypertension,” Advances in Experimental Medicine and Biology, vol. 661, pp. 171–185, 2010. View at Publisher · View at Google Scholar · View at Scopus
  267. R. Belostotsky, E. Ben-Shalom, C. Rinat et al., “Mutations in the mitochondrial Seryl-tRNA synthetase cause hyperuricemia, pulmonary hypertension, renal failure in infancy and alkalosis, HUPRA syndrome,” American Journal of Human Genetics, vol. 88, no. 2, pp. 193–200, 2011. View at Publisher · View at Google Scholar · View at Scopus
  268. S. L. Archer, M. Gomberg-Maitland, M. L. Maitland, S. Rich, J. G. N. Garcia, and E. K. Weir, “Mitochondrial metabolism, redox signaling, and fusion: a mitochondria-ROS-HIF-1α-Kv1.5 O2-sensing pathway at the intersection of pulmonary hypertension and cancer,” American Journal of Physiology, vol. 294, no. 2, pp. H570–H578, 2008. View at Publisher · View at Google Scholar · View at Scopus
  269. N. Weissmann, N. Ebert, M. Ahrens et al., “Effects of mitochondrial inhibitors and uncouplers on hypoxic vasoconstriction in rabbit lungs,” American Journal of Respiratory Cell and Molecular Biology, vol. 29, no. 6, pp. 721–732, 2003. View at Publisher · View at Google Scholar · View at Scopus
  270. K. Shimoda, K. Murakami, P. Enkhbaatar et al., “Effect of poly(ADP ribose) synthetase inhibition on burn and smoke inhalation injury in sheep,” American Journal of Physiology, vol. 285, no. 1, pp. L240–L249, 2003. View at Google Scholar · View at Scopus
  271. A. Tasatargil, G. Sadan, and E. Karasu, “Homocysteine-induced changes in vascular reactivity of guinea-pig pulmonary arteries: role of the oxidative stress and poly (ADP-ribose) polymerase activation,” Pulmonary Pharmacology and Therapeutics, vol. 20, no. 3, pp. 265–272, 2007. View at Publisher · View at Google Scholar · View at Scopus
  272. Y. Yu, S. H. Keller, C. V. Remillard et al., “A functional single-nucleotide polymorphism in the TRPC6 gene promoter associated with idiopathic pulmonary arterial hypertension,” Circulation, vol. 119, no. 17, pp. 2313–2322, 2009. View at Publisher · View at Google Scholar · View at Scopus
  273. M. I. Townsley, J. A. King, and D. F. Alvarez, “Ca2+ channels and pulmonary endothelial permeability: Insights from study of intact lung and chronic pulmonary hypertension,” Microcirculation, vol. 13, no. 8, pp. 725–739, 2006. View at Publisher · View at Google Scholar · View at Scopus
  274. A. L. Firth, C. V. Remillard, and J. X. J. Yuan, “TRP channels in hypertension,” Biochimica et Biophysica Acta, vol. 1772, no. 8, pp. 895–906, 2007. View at Publisher · View at Google Scholar · View at Scopus
  275. K. R. Zhou and Y. L. Lai, “Capsaicin pretreatment attenuates monocrotaline-induced ventilatory dysfunction and pulmonary hypertension,” Journal of Applied Physiology, vol. 75, no. 6, pp. 2781–2788, 1993. View at Google Scholar · View at Scopus
  276. Y. L. Lai, C. F. Chen, C. T. Chien, H. L. Shiao, A. A. Thacker, and H. Q. Zhang, “Capsaicin pretreatment attenuates chronic hypoxic pulmonary hypertension,” Respiration Physiology, vol. 99, no. 2, pp. 283–289, 1995. View at Publisher · View at Google Scholar · View at Scopus
  277. N. J. Katzman and Y. L. Lai, “Capsaicin pre- and post-treatment on rat monocrotaline pneumotoxicity,” Chinese Journal of Physiology, vol. 43, no. 4, pp. 171–178, 2000. View at Google Scholar · View at Scopus
  278. R. Goyal, D. G. Papamatheakis, M. Loftin et al., “Long-term maternal hypoxia: the role of extracellular Ca2+ entry during serotonin-mediated contractility in fetal ovine pulmonary arteries,” Reproductive Sciences, vol. 18, no. 10, pp. 948–962, 2011. View at Publisher · View at Google Scholar · View at Scopus
  279. A. R. Tonelli, H. Alnuaimat, and K. Mubarak, “Pulmonary vasodilator testing and use of calcium channel blockers in pulmonary arterial hypertension,” Respiratory Medicine, vol. 104, no. 4, pp. 481–496, 2010. View at Publisher · View at Google Scholar · View at Scopus
  280. D. Montani, L. Savale, D. Natali et al., “Long-term response to calcium-channel blockers in non-idiopathic pulmonary arterial hypertension,” European Heart Journal, vol. 31, no. 15, pp. 1898–1907, 2010. View at Publisher · View at Google Scholar · View at Scopus
  281. Y. Yang, M. Gao, Y. Guo, and J. Qiao, “Calcium antagonists, diltiazem and nifedipine, protect broilers against low temperature-induced pulmonary hypertension and pulmonary vascular remodeling,” Animal Science Journal, vol. 81, no. 4, pp. 494–500, 2010. View at Publisher · View at Google Scholar · View at Scopus
  282. Y. Yang, J. Qiao, H. Wang et al., “Calcium antagonist verapamil prevented pulmonary arterial hypertension in broilers with ascites by arresting pulmonary vascular remodeling,” European Journal of Pharmacology, vol. 561, no. 1–3, pp. 137–143, 2007. View at Publisher · View at Google Scholar · View at Scopus
  283. W. Ma, W. Han, P. A. Greer et al., “Calpain mediates pulmonary vascular remodeling in rodent models of pulmonary hypertension, and its inhibition attenuates pathologic features of disease,” Journal of Clinical Investigation, vol. 121, no. 11, pp. 4548–4566, 2011. View at Publisher · View at Google Scholar · View at Scopus
  284. A. Malinovschi, D. Henrohn, A. Eriksson, J. O. Lundberg, K. Alving, and G. Wikström, “Increased plasma and salivary nitrite and decreased bronchial contribution to exhaled NO in pulmonary arterial hypertension,” European Journal of Clinical Investigation, vol. 41, no. 8, pp. 889–897, 2011. View at Publisher · View at Google Scholar · View at Scopus
  285. R. E. Girgis, H. C. Champion, G. B. Diette, R. A. Johns, S. Permutt, and J. T. Sylvester, “Decreased exhaled nitric oxide in pulmonary arterial hypertension: response to Bosentan therapy,” American Journal of Respiratory and Critical Care Medicine, vol. 172, no. 3, pp. 352–357, 2005. View at Publisher · View at Google Scholar · View at Scopus
  286. F. T. Kaneko, A. C. Arroliga, R. A. Dweik et al., “Biochemical reaction products of nitric oxide as quantitative markers of primary pulmonary hypertension,” American Journal of Respiratory and Critical Care Medicine, vol. 158, no. 3, pp. 917–923, 1998. View at Google Scholar · View at Scopus
  287. G. Rolla, P. Colagrande, E. Scappaticci et al., “Exhaled nitric oxide in systemic sclerosis: relationships with lung involvement and pulmonary hypertension,” Journal of Rheumatology, vol. 27, no. 7, pp. 1693–1698, 2000. View at Google Scholar · View at Scopus
  288. M. S. Riley, J. Pórszász, J. Miranda, M. P. K. J. Engelen, B. Brundage, and K. Wasserman, “Exhaled nitric oxide during exercise in primary pulmonary hypertension and pulmonary fibrosis,” Chest, vol. 111, no. 1, pp. 44–50, 1997. View at Google Scholar · View at Scopus
  289. S. L. Archer, K. Djaballah, M. Humbert et al., “Nitric oxide deficiency in fenfluramine- and dexfenfluramine-induced pulmonary hypertension,” American Journal of Respiratory and Critical Care Medicine, vol. 158, no. 4, pp. 1061–1067, 1998. View at Google Scholar · View at Scopus
  290. Z. Gölbaş, S. Dinçer, H. Bayol et al., “Increased nitric oxide in exhaled air in patients with rheumatic heart disease,” European Journal of Heart Failure, vol. 3, no. 1, pp. 27–32, 2001. View at Publisher · View at Google Scholar · View at Scopus
  291. C. R. Forrest, C. Y. Pang, A. G. Zhong, and M. L. Kreidstein, “Efficacy of intravenous infusion of prostacyclin (PGI2) or prostaglandin E1 (PGE1) in augmentation of skin flap blood flow and viability in the pig,” Prostaglandins, vol. 41, no. 6, pp. 537–558, 1991. View at Publisher · View at Google Scholar · View at Scopus
  292. M. Özkan, R. A. Dweik, D. Laskowski, A. C. Arroliga, and S. C. Erzurum, “High levels of nitric oxide in individuals with pulmonary hypertension receiving epoprostenol therapy,” Lung, vol. 179, no. 4, pp. 233–243, 2001. View at Publisher · View at Google Scholar · View at Scopus
  293. B. Weinberger, L. Fakhrzadeh, D. E. Heck, J. D. Laskin, C. R. Gardner, and D. L. Laskin, “Inhaled nitric oxide primes lung macrophages to produce reactive oxygen and nitrogen intermediates,” American Journal of Respiratory and Critical Care Medicine, vol. 158, no. 3, pp. 931–938, 1998. View at Google Scholar · View at Scopus
  294. I. M. Robbins, A. R. Hemnes, J. Simon Gibbs et al., “Safety of sapropterin dihydrochloride (6r-bh4) in patients with pulmonary hypertension,” Experimental Lung Research, vol. 37, no. 1, pp. 26–34, 2011. View at Publisher · View at Google Scholar · View at Scopus
  295. R.-J. Teng, J. Du, H. Xu et al., “Sepiapterin improves angiogenesis of pulmonary artery endothelial cells with in utero pulmonary hypertension by recoupling endothelial nitric oxide synthase,” American Journal of Physiology, vol. 301, no. 3, pp. L334–L345, 2011. View at Publisher · View at Google Scholar · View at Scopus
  296. M. Umehara, A. Yamaguchi, S. Itakura et al., “Repeated Waon therapy improves pulmonary hypertension during exercise in patients with severe chronic obstructive pulmonary disease,” Journal of Cardiology, vol. 51, no. 2, pp. 106–113, 2008. View at Publisher · View at Google Scholar · View at Scopus
  297. M. L. Pall, “Do sauna therapy and exercise act by raising the availability of tetrahydrobiopterin?” Medical Hypotheses, vol. 73, no. 4, pp. 610–613, 2009. View at Publisher · View at Google Scholar · View at Scopus
  298. F. Raimondi, F. Migliaro, L. Capasso et al., “Intravenous magnesium sulphate vs. inhaled nitric oxide for moderate, persistent pulmonary hypertension of the newborn. A multicentre, retrospective study,” Journal of Tropical Pediatrics, vol. 54, no. 3, pp. 196–199, 2008. View at Publisher · View at Google Scholar · View at Scopus
  299. S. H. Daffa and W. A. Milaat, “Role of magnesium sulphate in treatment of severe persistent pulmonary hypertension of the neoborn,” Saudi Medical Journal, vol. 23, no. 10, pp. 1266–1269, 2002. View at Google Scholar · View at Scopus
  300. S. Chandran, E. Haque, H. T. Wickramasinghe, and Z. Wint, “Use of magnesium sulphate in severe persistent pulmonary hypertension of the newborn,” Journal of Tropical Pediatrics, vol. 50, no. 4, pp. 219–223, 2004. View at Publisher · View at Google Scholar · View at Scopus
  301. J. F. Tolsa, J. Cotting, N. Sekarski, M. Payot, J. L. Micheli, and A. Calame, “Magnesium sulphate as an alternative and safe treatment for severe persistent pulmonary hypertension of the newborn,” Archives of Disease in Childhood, vol. 72, no. 3, pp. F184–F187, 1995. View at Google Scholar · View at Scopus
  302. S. Uslu, S. Kumtepe, A. Bulbul, S. Comert, F. Bolat, and A. Nuhoglu, “A comparison of magnesium sulphate and sildenafil in the treatment of the newborns with persistent pulmonary hypertension: a randomized controlled trial,” Journal of Tropical Pediatrics, vol. 57, no. 4, pp. 245–250, 2011. View at Publisher · View at Google Scholar · View at Scopus
  303. N. Y. Boo, J. Rohana, S. C. Yong, A. Z. Bilkis, and F. Yong-Junina, “Inhaled nitric oxide and intravenous magnesium sulphate for the treatment of persistent pulmonary hypertension of the newborn,” Singapore Medical Journal, vol. 51, no. 2, pp. 144–150, 2010. View at Google Scholar · View at Scopus
  304. A. Csiszar, N. Labinskyy, A. Podlutsky et al., “Vasoprotective effects of resveratrol and SIRT1: attenuation of cigarette smoke-induced oxidative stress and proinflammatory phenotypic alterations,” American Journal of Physiology, vol. 294, no. 6, pp. H2721–H2735, 2008. View at Publisher · View at Google Scholar · View at Scopus
  305. A. Csiszar, N. Labinskyy, S. Olson et al., “Resveratrol prevents monocrotaline-induced pulmonary hypertension in rats,” Hypertension, vol. 54, no. 3, pp. 668–675, 2009. View at Publisher · View at Google Scholar · View at Scopus
  306. Z. Ungvari, N. Labinskyy, P. Mukhopadhyay et al., “Resveratrol attenuates mitochondrial oxidative stress in coronary arterial endothelial cells,” American Journal of Physiology, vol. 297, no. 5, pp. H1876–H1881, 2009. View at Publisher · View at Google Scholar · View at Scopus
  307. A. Biala, E. Tauriainen, A. Siltanen et al., “Resveratrol induces mitochondrial biogenesis and ameliorates Ang II-induced cardiac remodeling in transgenic rats harboring human renin and angiotensinogen genes,” Blood Pressure, vol. 19, no. 3, pp. 196–205, 2010. View at Publisher · View at Google Scholar · View at Scopus
  308. N. Xia, A. Daiber, A. Habermeier et al., “Resveratrol reverses endothelial nitric-oxide synthase uncoupling in apolipoprotein E knockout mice,” Journal of Pharmacology and Experimental Therapeutics, vol. 335, no. 1, pp. 149–154, 2010. View at Publisher · View at Google Scholar · View at Scopus
  309. Z. B. Gao, X. Q. Chen, and G. Y. Hu, “Inhibition of excitatory synaptic transmission by trans-resveratrol in rat hippocampus,” Brain Research, vol. 1111, no. 1, pp. 41–47, 2006. View at Publisher · View at Google Scholar · View at Scopus
  310. H. Zhang, G. P. Schools, T. Lei, W. Wang, H. K. Kimelberg, and M. Zhou, “Resveratrol attenuates early pyramidal neuron excitability impairment and death in acute rat hippocampal slices caused by oxygen-glucose deprivation,” Experimental Neurology, vol. 212, no. 1, pp. 44–52, 2008. View at Publisher · View at Google Scholar · View at Scopus
  311. A. P. Raval, H. W. Lin, K. R. Dave et al., “Resveratrol and ischemic preconditioning in the brain,” Current Medicinal Chemistry, vol. 15, no. 15, pp. 1545–1551, 2008. View at Publisher · View at Google Scholar · View at Scopus
  312. A. Quincozes-Santos and C. Gottfried, “Resveratrol modulates astroglial functions: neuroprotective hypothesis,” Annals of the New York Academy of Sciences, vol. 1215, no. 1, pp. 72–78, 2011. View at Publisher · View at Google Scholar · View at Scopus
  313. L. G. Chicoine, J. A. Stewart Jr., and P. A. Lucchesi, “Is resveratrol the magic bullet for pulmonary hypertension?” Hypertension, vol. 54, no. 3, pp. 473–474, 2009. View at Publisher · View at Google Scholar · View at Scopus
  314. M. C. Zillikens, J. B. J. van Meurs, E. J. G. Sijbrands et al., “SIRT1 genetic variation and mortality in type 2 diabetes: interaction with smoking and dietary niacin,” Free Radical Biology and Medicine, vol. 46, no. 6, pp. 836–841, 2009. View at Publisher · View at Google Scholar · View at Scopus