Table of Contents
ISRN Nanomaterials
Volume 2013, Article ID 745397, 7 pages
http://dx.doi.org/10.1155/2013/745397
Research Article

Mesoporous SiO2-Supported Pt Nanoparticles for Catalytic Application

Department of Chemistry, Tsinghua University, Beijing 100084, China

Received 4 December 2012; Accepted 30 December 2012

Academic Editors: C. Angeles-Chavez, A. Fidalgo, M. Mirzaei, and A. V. Raghu

Copyright © 2013 Yingze Cao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Q. Wang, G. Li, B. Zhao, and R. Zhou, “Investigation on properties of a novel ceria-zirconia-praseodymia solid solution and its application in Pd-only three-way catalyst for gasoline engine emission control,” Fuel, vol. 90, no. 10, pp. 3047–3055, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Bernal, G. Blanco, J. J. Calvino, J. M. Gatica, J. A. P. Omil, and J. M. Pintado, “Characterisation of three-way automotive aftertreatment catalysts and related model systems,” Topics in Catalysis, vol. 28, no. 1–4, pp. 31–46, 2004. View at Google Scholar · View at Scopus
  3. H. Birgersson, L. Eriksson, M. Boutonnet, and S. G. Jaras, “Thermal gas treatment to regenerate spent automotive three-way exhaust gas catalysts (TWC),” Applied Catalysis B, vol. 54, no. 3, pp. 193–200, 2004. View at Publisher · View at Google Scholar
  4. L. Feng, D. T. Hoang, C. K. Tsung et al., “Catalytic properties of Pt cluster-decorated CeO2 nanostructures,” Nano Research, vol. 4, no. 1, pp. 61–71, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Iglesias-Juez, A. B. Hungria, A. Martinez-Arias, J. A. Anderson, and M. Fernandez-Garcia, “Pd-based (Ce,Zr)Ox-supported catalysts: promoting effect of base metals (Cr, Cu, Ni) in CO and NO elimination,” Catalysis Today, vol. 143, no. 3-4, pp. 195–202, 2009. View at Publisher · View at Google Scholar
  6. I. Heo, J. W. Choung, P. S. Kim et al., “The alteration of the performance of field-aged Pd-based TWCs towards CO and C3H6 oxidation,” Applied Catalysis B, vol. 92, no. 1-2, pp. 114–125, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Linhua, S. Keqiang, P. Qing, X. Boqing, and L. Yadong, “Surface active sites on Co3O4 nanobelt and nanocube model catalysts for CO oxidation,” Nano Research, vol. 3, no. 5, pp. 363–368, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Noei, S. Amirjalayer, M. Muller et al., “Low-Temperature CO oxidation over Cu-based metal-organic frameworks monitored by using FTIR spectroscopy,” ChemCatChem, vol. 4, no. 6, pp. 755–759, 2012. View at Google Scholar
  9. O. Metin, S. Ozkar, and S. Sun, “Monodisperse nickel nanoparticles supported on SiO2 as an effective catalyst for the hydrolysis of ammonia-borane,” Nano Research, vol. 3, no. 9, pp. 676–684, 2010. View at Publisher · View at Google Scholar
  10. A. Suda, K. Yamamura, A. Morikawa et al., “Atmospheric pressure solvothermal synthesis of ceria-zirconia solid solutions and their large oxygen storage capacity,” Journal of Materials Science, vol. 43, no. 7, pp. 2258–2262, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. X. Wang, G. Lu, Y. Guo, L. Jiang, Y. Guo, and C. Li, “Effect of additives on the structure characteristics, thermal stability, reducibility and catalytic activity of CeO2-ZrO2 solid solution for methane combustion,” Journal of Materials Science, vol. 44, no. 5, pp. 1294–1301, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. B. M. Reddy, A. Khan, P. Lakshmanan, M. Aouine, S. Loridant, and J. C. Volta, “Structural characterization of nanosized CeO2-SiO2, CeO2-TiO2, and CeO2-ZrO2 catalysts by XRD, Raman, and HREM techniques,” Journal of Physical Chemistry B, vol. 109, no. 8, pp. 3355–3363, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Kanda, A. Seino, T. Kobayashi, Y. Uemichi, and M. Sugioka, “Catalytic performance of noble metals supported on mesoporous silica MCM-41 for hydrodesulfurization of benzothiophene,” Journal of the Japan Petroleum Institute, vol. 52, no. 2, pp. 42–50, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Rocchini, M. Vicario, J. Llorca, C. de Leitenburg, G. Dolcetti, and A. Trovarelli, “Reduction and oxygen storage behavior of noble metals supported on silica-doped ceria,” Journal of Catalysis, vol. 211, no. 2, pp. 407–421, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, “Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism,” Nature, vol. 359, no. 6397, pp. 710–712, 1992. View at Google Scholar · View at Scopus
  16. J. Y. Ying, C. P. Mehnert, and M. S. Wong, “Synthesis and applications of supramolecular-templated mesoporous materials,” Angewandte Chemie, vol. 38, no. 1-2, pp. 57–77, 1999. View at Google Scholar · View at Scopus
  17. N.-B. Zhang, J.-J. Xu, and C.-G. Xue, “Core-shell structured mesoporous silica nanoparticles equipped with pyrene-based chemosensor: synthesis, characterization, and sensing activity towards Hg(II),” Journal of Luminescence, vol. 131, no. 9, pp. 2021–2025, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Morelli, P. Maris, D. Sisci et al., “PEG-templated mesoporous silica nanoparticles exclusively target cancer cells,” Nanoscale, vol. 3, no. 8, pp. 3198–3207, 2011. View at Publisher · View at Google Scholar
  19. J. Zhang, X. Li, J. M. Rosenholm, and H.-C. Gu, “Synthesis and characterization of pore size-tunable magnetic mesoporous silica nanoparticles,” Journal of Colloid and Interface Science, vol. 361, no. 1, pp. 16–24, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. X.-J. Wu, Y. Jiang, and D. Xu, “A unique transformation route for synthesis of rodlike hollow mesoporous silica particles,” Journal of Physical Chemistry C, vol. 115, no. 23, pp. 11342–11347, 2011. View at Publisher · View at Google Scholar
  21. L. Du, S. Liao, Q. Liu et al., “Porous grape-like spherical silica with hydrogen storage capability, synthesized using neutral dual surfactants as templates,” International Journal of Hydrogen Energy, vol. 34, no. 9, pp. 3810–3815, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. U. P. Azad, V. Ganesan, and M. Pal, “Catalytic reduction of organic dyes at gold nanoparticles impregnated silica materials: influence of functional groups and surfactants,” Journal of Nanoparticle Research, vol. 13, no. 9, pp. 3951–3959, 2011. View at Publisher · View at Google Scholar
  23. Y. Wei, D. Jin, T. Ding et al., “A non-surfactant templating route to mesoporous silica materials,” Advanced Materials, vol. 10, no. 4, pp. 313–316, 1998. View at Google Scholar · View at Scopus
  24. J. B. Pang, K. Y. Qiu, Y. Wei, X. J. Lei, and Z. F. Liu, “A facile preparation of transparent and monolithic mesoporous silica materials,” Chemical Communications, no. 6, pp. 477–478, 2000. View at Google Scholar · View at Scopus
  25. J. B. Pang, K. Y. Qiu, and Y. Wei, “Preparation of mesoporous silica materials with non-surfactant hydroxy-carboxylic acid compounds as templates via sol-gel process,” Journal of Non-Crystalline Solids, vol. 283, no. 1–3, pp. 101–108, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Y. Zheng, J. B. Pang, K. Y. Qiu, and Y. Wei, “Synthesis and characterization of mesoporous titania and silica-titania materials by urea templated sol-gel reactions,” Microporous and Mesoporous Materials, vol. 49, no. 1–3, pp. 189–195, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. I. Mukherjee, A. Mylonakis, Y. Guo et al., “Effect of nonsurfactant template content on the particle size and surface area of monodisperse mesoporous silica nanospheres,” Microporous and Mesoporous Materials, vol. 122, no. 1–3, pp. 168–174, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Wei, J. Xu, Q. Feng, H. Dong, and M. Lin, “Encapsulation of enzymes in mesoporous host materials via the nonsurfactant-templated sol-gel process,” Materials Letters, vol. 44, no. 1, pp. 6–11, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. K. S. W. Sing, D. H. Everett, R. A. W. Haul et al., “Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984),” Pure and Applied Chemistry, vol. 57, no. 4, pp. 603–619, 1985. View at Publisher · View at Google Scholar
  30. B. Hosticka, P. M. Norris, J. S. Brenizer, and C. E. Daitch, “Gas flow through aerogels,” Journal of Non-Crystalline Solids, vol. 225, no. 1–3, pp. 293–297, 1998. View at Google Scholar · View at Scopus