Table of Contents
ISRN Stem Cells
Volume 2013, Article ID 749587, 10 pages
http://dx.doi.org/10.1155/2013/749587
Research Article

Differentiation of Human Umbilical Cord Lining Membrane-Derived Mesenchymal Stem Cells into Hepatocyte-Like Cells

1Faculty of Biology, University of Science, Vietnam National University, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City 70000, Vietnam
2Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, 9/621 Xa Lo Ha Noi Street, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 70000, Vietnam
3School of Biotechnology, International University, Vietnam National University, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 70000, Vietnam
4Department of Immunology, Vietnam Military Medical University, 160 Phung Hung Street, Ha Dong District, Ha Noi City 10000, Vietnam

Received 3 October 2013; Accepted 28 October 2013

Academic Editors: A. Chapel and S. M. Hwang

Copyright © 2013 Chinh Chung Doan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Chamberlain, J. Fox, B. Ashton, and J. Middleton, “Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing,” Stem Cells, vol. 25, no. 11, pp. 2739–2749, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. W. Wagner, F. Wein, A. Seckinger et al., “Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood,” Experimental Hematology, vol. 33, no. 11, pp. 1402–1416, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Baksh, R. Yao, and R. S. Tuan, “Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow,” Stem Cells, vol. 25, no. 6, pp. 1384–1392, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Stenderup, J. Justesen, C. Clausen, and M. Kassem, “Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells,” Bone, vol. 33, no. 6, pp. 919–926, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Dalous, J. Larghero, and O. Baud, “Transplantation of umbilical cord-derived mesenchymal stem cells as a novel strategy to protect the central nervous system: technical aspects, preclinical studies, and clinical perspectives,” Pediatric Research, vol. 7, no. 4, pp. 482–490, 2012. View at Google Scholar
  6. R. Friedman, M. Betancur, L. Boissel, H. Tuncer, C. Cetrulo, and H. Klingemann, “Umbilical cord mesenchymal stem cells: adjuvants for human cell transplantation,” Biology of Blood and Marrow Transplantation, vol. 13, no. 12, pp. 1477–1486, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Secco, E. Zucconi, N. M. Vieira et al., “Multipotent stem cells from umbilical cord: cord is richer than blood!,” Stem Cells, vol. 26, no. 1, pp. 146–150, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. M. J. Seo, S. Y. Suh, Y. C. Bae, and J. S. Jung, “Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo,” Biochemical and Biophysical Research Communications, vol. 328, no. 1, pp. 258–264, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. I. J. Fox and J. R. Chowdhury, “Hepatocyte transplantation,” American Journal of Transplantation, vol. 4, supplement 6, pp. 7–13, 2004. View at Google Scholar · View at Scopus
  10. S. C. Strom, R. A. Fisher, M. T. Thompson et al., “Hepatocyte transplantation as a bridge to orthotopic liver transplantation in terminal liver failure,” Transplantation, vol. 63, no. 4, pp. 559–569, 1997. View at Publisher · View at Google Scholar · View at Scopus
  11. P. A. Lysy, D. Campard, F. Smets, M. Najimi, and E. M. Sokal, “Stem cells for liver tissue repair: current knowledge and perspectives,” World Journal of Gastroenterology, vol. 14, no. 6, pp. 864–875, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. S. H. Hong, E. J. Gang, J. A. Jeong et al., “In vitro differentiation of human umbilical cord blood-derived mesenchymal stem cells into hepatocyte-like cells,” Biochemical and Biophysical Research Communications, vol. 330, no. 4, pp. 1153–1161, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Taléns-Visconti, A. Bonora, R. Jover et al., “Hepatogenic differentiation of human mesenchymal stem cells from adipose tissue in comparison with bone marrow mesenchymal stem cells,” World Journal of Gastroenterology, vol. 12, no. 36, pp. 5834–5845, 2006. View at Google Scholar · View at Scopus
  14. H.-H. Yoon, B.-Y. Jung, Y.-K. Seo, K.-Y. Song, and J.-K. Park, “In vitro hepatic differentiation of umbilical cord-derived mesenchymal stem cell,” Process Biochemistry, vol. 45, no. 12, pp. 1857–1864, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Snykers, T. Vanhaecke, P. Papeleu et al., “Sequential exposure to cytokines reflecting embryogenesis: the key for in vitro differentiation of adult bone marrow stem cells into functional hepatocyte-like cells,” Toxicological Sciences, vol. 94, no. 2, pp. 330–341, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Kanazawa, Y. Fujimoto, T. Teratani et al., “Bone marrow-derived mesenchymal stem cells ameliorate hepatic ischemia reperfusion injury in a rat model,” PLoS ONE, vol. 6, no. 4, Article ID e19195, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Mouiseddine, S. François, M. Souidi, and A. Chapel, “Intravenous human mesenchymal stem cells transplantation in NOD/SCID mice preserve liver integrity of irradiation damage,” Methods in Molecular Biology, vol. 826, pp. 179–188, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Kita, G. G. Gauglitz, T. T. Phan, D. N. Herndon, and M. G. Jeschke, “Isolation and characterization of mesenchymal stem cells from the sub-amniotic human umbilical cord lining membrane,” Stem Cells and Development, vol. 19, no. 4, pp. 491–501, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. K. J. Livak and T. D. Schmittgen, “Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method,” Methods, vol. 25, no. 4, pp. 402–408, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Dominici, K. le Blanc, I. Mueller et al., “Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement,” Cytotherapy, vol. 8, no. 4, pp. 315–317, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Schmidt, F. Bladt, S. Goedecke et al., “Scatter factor/hepatocyte growth factor is essential for liver development,” Nature, vol. 373, no. 6516, pp. 699–702, 1995. View at Google Scholar · View at Scopus
  22. J. Jung, M. Zheng, M. Goldfarb, and K. S. Zaret, “Initiation of mammalian liver development from endoderm by fibroblast growth factors,” Science, vol. 284, no. 5422, pp. 1998–2003, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Sakai, J. Jiang, N. Kojima, T. Kinoshita, and A. Miyajima, “Enhanced in vitro maturation of fetal mouse liver cells with oncostatin M, nicotinamide, and dimethyl sulfoxide,” Cell Transplantation, vol. 11, no. 5, pp. 435–441, 2002. View at Google Scholar · View at Scopus
  24. G. K. Michalopoulos, W. C. Bowen, K. Mule, and J. Luo, “HGF-, EGF-, and dexamethasone-induced gene expression patterns during formation of tissue in hepatic organoid cultures,” Gene Expression, vol. 11, no. 2, pp. 55–75, 2003. View at Google Scholar · View at Scopus
  25. E. Schmelzer, E. Wauthier, and L. M. Reid, “The phenotypes of pluripotent human hepatic progenitors,” Stem Cells, vol. 24, no. 8, pp. 1852–1858, 2006. View at Publisher · View at Google Scholar · View at Scopus