Table of Contents
ISRN Oncology
Volume 2013 (2013), Article ID 759725, 7 pages
http://dx.doi.org/10.1155/2013/759725
Review Article

The Biology of Ewing Sarcoma

Hospital for Special Surgery, 523 East 72nd Street, Suite 507, New York, NY 10021, USA

Received 14 November 2012; Accepted 16 December 2012

Academic Editors: B. Fang and I. Faraoni

Copyright © 2013 Keir A. Ross et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. L. Ordóñez, D. Osuna, D. Herrero, E. de Álava, and J. Madoz-Gúrpide, “Advances in Ewing's sarcoma research: where are we now and what lies ahead?” Cancer Research, vol. 69, no. 18, pp. 7140–7150, 2009. View at Publisher · View at Google Scholar
  2. M. Kauer, J. Ban, R. Kofler et al., “A molecular function map of Ewing's sarcoma,” PLoS ONE, vol. 4, no. 4, Article ID e5415, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. P. P. Lin, Y. Wang, and G. Lozano, “Mesenchymal stem cells and the origin of Ewing's sarcoma,” Sarcoma, vol. 2011, Article ID 276463, 8 pages, 2011. View at Publisher · View at Google Scholar
  4. N. Riggi and I. Stamenkovic, “The biology of Ewing sarcoma,” Cancer Letters, vol. 254, no. 1, pp. 1–10, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Rodriguez-Galindo, S. L. Spunt, and A. S. Pappo, “Treatment of Ewing sarcoma family of tumors: current status and outlook for the future,” Medical and Pediatric Oncology, vol. 40, no. 5, pp. 276–287, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. V. T. DeVita, T. S. Lawrence, S. A. Rosenberg, R. A. DePinho, and R. A. Weinberg, Eds., DeVita, Hellman, and Rosenberg's Cancer. Principles & Practice of Oncology.
  7. N. Esiashvili, M. Goodman, and R. B. Marcus Jr., “Changes in incidence and survival of Ewing sarcoma patients over the past 3 decades: surveillance epidemiology and end results data,” Journal of Pediatric Hematology/Oncology, vol. 30, no. 6, pp. 425–430, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. B. A. Teicher, R. G. Bagley, C. Rouleau, A. Kruger, Y. Ren, and L. Kurtzberg, “Characteristics of human Ewing/PNET sarcoma models,” Annals of Saudi Medicine, vol. 31, no. 2, pp. 174–182, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Tirode, K. Laud-Duval, A. Prieur, B. Delorme, P. Charbord, and O. Delattre, “Mesenchymal stem cell features of Ewing tumors,” Cancer Cell, vol. 11, no. 5, pp. 421–429, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. J. R. Downing, D. R. Head, D. M. Parham et al., “Detection of the (11;22)(q24;q12) translocation of Ewing's sarcoma and peripheral neuroectodermal tumor by reverse transcription polymerase chain reaction,” American Journal of Pathology, vol. 143, no. 5, pp. 1294–1300, 1993. View at Google Scholar · View at Scopus
  11. G. Maire, C. W. Brown, J. Bayani et al., “Complex rearrangement of chromosomes 19, 21, and 22 in Ewing sarcoma involving a novel reciprocal inversion-insertion mechanism of EWS-ERG fusion gene formation: a case analysis and literature review,” Cancer Genetics and Cytogenetics, vol. 181, no. 2, pp. 81–92, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Arvand and C. T. Denny, “Biology of EWS/ETS fusions in Ewing's family tumors,” Oncogene, vol. 20, no. 40, pp. 5747–5754, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. R. A. Bailly, R. Bosselut, J. Zucman et al., “DNA-binding and transcriptional activation properties of the EWS-FLI-1 fusion protein resulting from the t(11;22) translocation in Ewing sarcoma,” Molecular and Cellular Biology, vol. 14, no. 5, pp. 3230–3241, 1994. View at Google Scholar · View at Scopus
  14. A. D. Sharrocks, “The ETS-domain transcription factor family,” Nature Reviews Molecular Cell Biology, vol. 2, no. 11, pp. 827–837, 2001. View at Google Scholar
  15. F. C. Kelleher and D. M. Thomas, “Molecular pathogenesis and targeted therapeutics in Ewing sarcoma/primitive neuroectodermal tumours,” Clinical Sarcoma Research, vol. 2, no. 1, article 6, 2012. View at Publisher · View at Google Scholar
  16. H. Kovar, D. Aryee, and A. Zoubek, “The Ewing family of tumors and the search for the Achilles' heel,” Current Opinion in Oncology, vol. 11, no. 4, pp. 275–284, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. E. de Alava, A. Kawai, J. H. Healey et al., “EWS-FLI1 fusion transcript structure is an independent determinant of prognosis in Ewing's sarcoma,” Journal of Clinical Oncology, vol. 16, no. 4, pp. 1248–1255, 1998. View at Google Scholar
  18. E. C. Toomey, J. D. Schiffman, and S. L. Lessnick, “Recent advances in the molecular pathogenesis of Ewing's sarcoma,” Oncogene, vol. 29, no. 32, pp. 4504–4516, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Uren and J. A. Toretsky, “Ewing's sarcoma oncoprotein EWS-FLI1: the perfect target without a therapeutic agent,” Future Oncology, vol. 1, no. 4, pp. 521–528, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Kim, C. T. Denny, and R. Wisdom, “Cooperative DNA binding with AP-1 proteins is required for transformation by EWS-Ets fusion proteins,” Molecular and Cellular Biology, vol. 26, no. 7, pp. 2467–2478, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Cironi, N. Riggi, P. Provero et al., “IGF1 is a common target gene of Ewing's sarcoma fusion proteins in mesenchymal progenitor cells,” PLoS ONE, vol. 3, no. 7, Article ID e2634, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. M. R. Sollazzo, M. S. Benassi, G. Magagnoli et al., “Increased c-myc oncogene expression in Ewing's sarcoma: correlation with Ki67 proliferation index,” Tumori, vol. 85, no. 3, pp. 167–173, 1999. View at Google Scholar · View at Scopus
  23. D. Herrero-Martín, D. Osuna, J. L. Ordóñez et al., “Stable interference of EWS-FLI1 in an Ewing sarcoma cell line impairs IGF-1/IGF-1R signalling and reveals TOPK as a new target,” British Journal of Cancer, vol. 101, no. 1, pp. 80–90, 2009. View at Publisher · View at Google Scholar
  24. R. Smith, L. A. Owen, D. J. Trem et al., “Expression profiling of EWS/FLI identifies NKX2.2 as a critical target gene in Ewing's sarcoma,” Cancer Cell, vol. 9, no. 5, pp. 405–416, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Fukuma, H. Okita, J.-I. Hata, and A. Umezawa, “Upregulation of Id2, an oncogenic helix-loop-helix protein, is mediated by the chimeric EWS/ets protein in Ewing sarcoma,” Oncogene, vol. 22, no. 1, pp. 1–9, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. E. García-Aragoncillo, J. Carrillo, E. Lalli et al., “DAX1, a direct target of EWS/FLI1 oncoprotein, is a principal regulator of cell-cycle progression in Ewing's tumor cells,” Oncogene, vol. 27, no. 46, pp. 6034–6043, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. J. P. Zwerner, J. Joo, K. L. Warner et al., “The EWS/FLI1 oncogenic transcription factor deregulates GLI1,” Oncogene, vol. 27, no. 23, pp. 3282–3291, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. G. H. S. Richter, S. Plehm, A. Fasan et al., “EZH2 is a mediator of EWS/FLI1 driven tumor growth and metastasis blocking endothelial and neuro-ectodermal differentiation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 13, pp. 5324–5329, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Siligan, J. Ban, R. Bachmaier et al., “EWS-FLI1 target genes recovered from Ewing's sarcoma chromatin,” Oncogene, vol. 24, no. 15, pp. 2512–2524, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Kikuchi, M. Murakami, S. Sobue et al., “Ewing's sarcoma fusion protein, EWS/Fli-1 and Fli-1 protein induce PLD2 but not PLD1 gene expression by binding to an ETS domain of 5 promoter,” Oncogene, vol. 26, no. 12, pp. 1802–1810, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. K.-B. Hahm, K. Cho, C. Lee et al., “Repression of the gene encoding the TGF-β type II receptor is a major target of the EWS-FLI1 oncoprotein,” Nature Genetics, vol. 23, no. 2, pp. 222–227, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. F. Nakatani, K. Tanaka, R. Sakimura et al., “Identification of p21WAF1/CIP1 as a direct target of EWS-Fli1 oncogenic fusion protein,” The Journal of Biological Chemistry, vol. 278, no. 17, pp. 15105–15115, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. L. Dauphinot, C. de Oliveira, T. Melot et al., “Analysis of the expression of cell cycle regulators in Ewing cell lines: EWS-FLI-1 modulates p57KIP2 and c-Myc expression,” Oncogene, vol. 20, no. 25, pp. 3258–3265, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Prieur, F. Tirode, P. Cohen, and O. Delattre, “EWS/FLI-1 silencing and gene profiling of Ewing cells reveal downstream oncogenic pathways and a crucial role for repression of insulin-like growth factor binding protein 3,” Molecular and Cellular Biology, vol. 24, no. 16, pp. 7275–7283, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. N. Riggi, M.-L. Suvà, C. de Vito et al., “EWS-FLI-1 modulates miRNA145 and SOX2 expression to initiate mesenchymal stem cell reprogramming toward Ewing sarcoma cancer stem cells,” Genes and Development, vol. 24, no. 9, pp. 916–932, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Ichikawa, K. Shimizu, Y. Hayashi, and M. Ohki, “An RNA-binding protein gene, TLS/FUS, is fused to ERG in human myeloid leukemia with t(16;21) chromosomal translocation,” Cancer Research, vol. 54, no. 11, pp. 2865–2868, 1994. View at Google Scholar · View at Scopus
  37. D. Herrero-Martin, A. Fourtouna, S. Niedan, L. T. Riedmann, R. Schwentner, and D. N. T. Aryee, “Factors affecting EWS-FLI1 activity in Ewing's sarcoma,” Sarcoma, vol. 2011, Article ID 352580, 11 pages, 2011. View at Publisher · View at Google Scholar
  38. A. O. Cavazzana, J. S. Miser, J. Jefferson, and T. J. Triche, “Experimental evidence for a neural origin of Ewing's sarcoma of bone,” American Journal of Pathology, vol. 127, no. 3, pp. 507–518, 1987. View at Google Scholar · View at Scopus
  39. C.-H. Suh, N. G. Ordóñez, J. Hicks, and B. Mackay, “Ultrastructure of the Ewing's sarcoma family of tumors,” Ultrastructural Pathology, vol. 26, no. 2, pp. 67–76, 2002. View at Publisher · View at Google Scholar
  40. S. L. Lessnick, C. S. Dacwag, and T. R. Golub, “The Ewing's sarcoma oncoprotein EWS/FLI induces a p53-dependent growth arrest in primary human fibroblasts,” Cancer Cell, vol. 1, no. 4, pp. 393–401, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. C. J. Rorie, V. D. Thomas, P. Chen, H. H. Pierce, J. P. O'Bryan, and B. E. Weissman, “The Ews/Fli-1 fusion gene switches the differentiation program of neuroblastomas to Ewing sarcoma/peripheral primitive neuroectodermal tumors,” Cancer Research, vol. 64, no. 4, pp. 1266–1277, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Hu-Lieskovan, J. Zhang, L. Wu, H. Shimada, D. E. Schofield, and T. J. Triche, “EWS-FLI1 fusion protein up-regulates critical genes in neural crest development and is responsible for the observed phenotype of Ewing's family of tumors,” Cancer Research, vol. 65, no. 11, pp. 4633–4644, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. M. A. Teitell, A. D. Thompson, P. H. B. Sorensen, H. Shimada, T. J. Triche, and C. T. Denny, “EWS/ETS fusion genes induce epithelial and neuroectodermal differentiation in NIH 3T3 fibroblasts,” Laboratory Investigation, vol. 79, no. 12, pp. 1535–1543, 1999. View at Google Scholar · View at Scopus
  44. Y. Castillero-Trejo, S. Eliazer, L. Xiang, J. A. Richardson, and R. L. Ilaria Jr., “Expression of the EWS/FLI-1 oncogene in murine primary bone-derived cells results in EWS/FLI-1-dependent, Ewing sarcoma-like tumors,” Cancer Research, vol. 65, no. 19, pp. 8698–8705, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. N. Riggi, L. Cironi, P. Provero et al., “Development of Ewing's sarcoma from primary bone marrow-derived mesenchymal progenitor cells,” Cancer Research, vol. 65, no. 24, pp. 11459–11468, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. E. C. Torchia, S. Jaishankar, and S. J. Baker, “Ewing tumor fusion proteins block the differentiation of pluripotent marrow stromal cells,” Cancer Research, vol. 63, no. 13, pp. 3464–3468, 2003. View at Google Scholar · View at Scopus
  47. N. Riggi, M.-L. Suvà, D. Suvà et al., “EWS-FLI-1 expression triggers a Ewing's sarcoma initiation program in primary human mesenchymal stem cells,” Cancer Research, vol. 68, no. 7, pp. 2176–2185, 2008. View at Publisher · View at Google Scholar
  48. N. Riggi, M.-L. Suvà, and I. Stamenkovic, “Ewing's sarcoma origin: from duel to duality,” Expert Review of Anticancer Therapy, vol. 9, no. 8, pp. 1025–1030, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. C. von Levetzow, X. Jiang, Y. Gwye et al., “Modeling initiation of Ewing sarcoma in human neural crest cells,” PLoS ONE, vol. 6, no. 4, Article ID e19305, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. B. Widhe and T. Widhe, “Initial symptoms and clinical features in osteosarcoma and Ewing sarcoma,” Journal of Bone and Joint Surgery A, vol. 82, no. 5, pp. 667–674, 2000. View at Google Scholar · View at Scopus
  51. O. Sneppen and L. M. Hansen, “Presenting symptoms and treatment delay in osteosarcoma and Ewing's sarcoma,” Acra Radiologica Oncology, vol. 23, no. 2-3, pp. 159–162, 1984. View at Google Scholar · View at Scopus
  52. Y. Iwamoto, “Diagnosis and treatment of Ewing's sarcoma,” Japanese Journal of Clinical Oncology, vol. 37, no. 2, pp. 79–89, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Bernstein, H. Kovar, M. Paulussen et al., “Ewing's sarcoma family of tumors: current management,” The Oncologist, vol. 11, no. 5, pp. 503–519, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. C. B. Henk, S. Grampp, P. Wiesbauer et al., “Ewing sarcoma. Diagnostic imaging,” Der Radiologe, vol. 38, no. 6, pp. 509–522, 1998. View at Publisher · View at Google Scholar · View at Scopus
  55. H. J. Van Der Woude, J. L. Bloem, and P. C. W. Hogendoorn, “Preoperative evaluation and monitoring chemotherapy in patients with high-grade osteogenic and Ewing's sarcoma: review of current imaging modalities,” Skeletal Radiology, vol. 27, no. 2, pp. 57–71, 1998. View at Publisher · View at Google Scholar · View at Scopus
  56. National Cancer Institute: PDQ Ewing Sarcoma Family of Tumors Treatment. Bethesda, Md, USA, National Cancer Institute, 2012, http://cancer.gov/cancertopics/pdq/treatment/ewings/HealthProfessional.
  57. A. Schuck, S. Ahrens, M. Paulussen et al., “Local therapy in localized Ewing tumors: results of 1058 patients treated in the CESS 81, CESS 86, and EICESS 92 trials,” International Journal of Radiation Oncology, Biology and Physics, vol. 55, no. 1, pp. 168–177, 2003. View at Publisher · View at Google Scholar · View at Scopus
  58. S. L. Sailer, D. C. Harmon, H. J. Mankin, J. T. Truman, and H. D. Suit, “Ewing's sarcoma: surgical resection as a prognostic factor,” International Journal of Radiation Oncology, Biology and Physics, vol. 15, no. 1, pp. 43–52, 1988. View at Google Scholar · View at Scopus
  59. G. Bacci, S. Ferrari, F. Bertoni et al., “Prognostic factors in nonmetastatic Ewin's srcoma of bone treated with adjuvant chemotherapy: analysis of 359 patients at the Intituto Orthopedico Rizzoli,” Journal of Clinical Oncology, vol. 18, no. 1, pp. 4–11, 2000. View at Google Scholar
  60. W. F. Enneking, Musculoskeletal Tumor Surgery, Churchill Levingstone, New York, NY, USA, 1983.
  61. A. Schuck, J. Hofmann, C. Rübe et al., “Radiotherapy in Ewing's sarcoma and PNET of the chest wall: results of the trials CESS 81, CESS 86 and EICESS 92,” International Journal of Radiation Oncology, Biology and Physics, vol. 42, no. 5, pp. 1001–1006, 1998. View at Publisher · View at Google Scholar · View at Scopus
  62. V. Subbiah, P. Anderson, A. J. Lazar, E. Burdett, K. Raymond, and J. A. Ludwig, “Ewing's sarcoma: standard and experimental treatment options,” Current Treatment Options in Oncology, vol. 10, no. 1-2, pp. 126–140, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. M. M. Thacker, H. T. Temple, and S. P. Scully, “Current treatment for Ewing's sarcoma,” Expert Review of Anticancer Therapy, vol. 5, no. 2, pp. 319–331, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Paulussen, S. Ahrens, S. Burdach et al., “Primary metastatic (stage IV) Ewing tumor: survival analysis of 171 patients from the EICESS studies,” Annals of Oncology, vol. 9, no. 3, pp. 275–281, 1998. View at Publisher · View at Google Scholar · View at Scopus
  65. S. J. Cotterill, S. Ahrens, M. Paulussen et al., “Prognostic factors in Ewing’s tumor of bone: analysis of 975 patients from the European Intergroup Cooperative Ewing’s Sarcoma Study Group,” Journal of Clinical Oncology, vol. 18, no. 17, pp. 3108–3114, 2000. View at Google Scholar
  66. J. S. Miser, R. E. Goldsby, Z. Chen et al., “Treatment of metastatic Ewing sarcoma/primitive neuroectodermal tumor of bone: evaluation of increasing the dose intensity of chemotherapy—a report from the Children's Oncology Group,” Pediatric Blood and Cancer, vol. 49, no. 7, pp. 894–900, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. P. A. Meyers, M. D. Krailo, M. Ladanyi et al., “High-dose melphalan, etoposide, total-body irradiation, and autologous stem-cell reconstitution as consolidation therapy for high-risk Ewing's sarcoma does not improve prognosis,” Journal of Clinical Oncology, vol. 19, no. 11, pp. 2812–2820, 2001. View at Google Scholar · View at Scopus
  68. H. Jurgens, U. Exner, H. Gadner et al., “Multidisciplinary treatment of primary Ewing's sarcoma of bone: a 6-year experience of a European Cooperative trial,” Cancer, vol. 61, no. 1, pp. 23–32, 1988. View at Google Scholar · View at Scopus
  69. S. Ahrens, C. Hoffmann, S. Jabar et al., “Evaluation of prognostic in a tumor volume-adapted treatment strategy for localized Ewing sarcoma of bone: the CESS 86 experience. Cooperative Ewing Sarcoma Study,” Medical and Pediatric Oncology, vol. 32, no. 3, pp. 186–195, 1999. View at Google Scholar
  70. S. G. DuBois, N. Marina, and J. Glade-Bender, “Angiogenesis and vascular targeting in Ewing sarcoma: a review of preclinical and clinical data,” Cancer, vol. 116, no. 3, pp. 749–757, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. L. M. Barker, T. W. Pendergrass, J. E. Sanders, and D. S. Hawkins, “Survival after recurrence of Ewing's sarcoma family of tumors,” Journal of Clinical Oncology, vol. 23, no. 19, pp. 4354–4362, 2005. View at Publisher · View at Google Scholar · View at Scopus
  72. K. Tanaka, T. Iwakuma, K. Harimaya, H. Sato, and Y. Iwamoto, “EWS-Fli1 antisense oligodeoxynucleotide inhibits proliferation of human Ewing's sarcoma and primitive neuroectodermal tumor cells,” The Journal of Clinical Investigation, vol. 99, no. 2, pp. 239–247, 1997. View at Google Scholar · View at Scopus
  73. S. Hu-Lieskovan, J. D. Heidel, D. W. Bartlett, M. E. Davis, and T. J. Triche, “Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing's sarcoma,” Cancer Research, vol. 65, no. 19, pp. 8984–8992, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. D. Grimm, K. L. Streetz, C. L. Jopling et al., “Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways,” Nature, vol. 441, no. 7092, pp. 537–541, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. D. Olmos, S. Postel-Vinay, L. R. Molife et al., “Safety, pharmacokinetics, and preliminary activity of the anti-IGF-1R antibody figitumumab (CP-751,871) in patients with sarcoma and Ewing's sarcoma: a phase 1 expansion cohort study,” The Lancet Oncology, vol. 11, no. 2, pp. 129–135, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. ESMO Conference, Milan October 2010 In Proferred papers. 13440 Safety and efficacy results from a phase 1/2 study of the anti-IGF-IR antibody figitumab in patients with refractory Ewing and osteosarcomas. Heribert Juergens, Muenster, Germany.
  77. A. S. Pappo, S. R. Patel, J. Crowley et al., “R1507, a monoclonal antibody to the insulin-like growth factor 1 receptor, in patients with recurrent or refractory Ewing sarcoma family of tumors: results of a phase II Sarcoma Alliance for Research through Collaboration study,” Journal of Clinical Oncology, vol. 29, no. 34, pp. 4541–4547, 2011. View at Publisher · View at Google Scholar
  78. A. Naing, R. Kurzrock, A. M. Burger et al., “Phase I trial of cixutumumab combined with temsirolimus in patients with advanced cancer,” Clinical Cancer Research, vol. 17, no. 18, pp. 6052–6060, 2011. View at Publisher · View at Google Scholar
  79. S. Chawla, A. Tolcher, A. Staddon et al., “Updated results of a phase II trial of AP23573, a novel mTOR inhibitor, in patients (pts) with advanced soft tissue or bone sarcomas,” Journal of Clinical Oncology, vol. 24, no. 18, article 9505, supplement, ASCO Annual Meeting Proceedings Part I, 2006. View at Google Scholar
  80. M. Bond, M. L. Bernstein, A. Pappo et al., “A phase II study of imatinib mesylate in children with refractory or relapsed solid tumors: a Children's Oncology Group study,” Pediatric Blood and Cancer, vol. 50, no. 2, pp. 254–258, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. J. L. Glade Bender, P. C. Adamson, J. M. Reid et al., “Phase I trial and pharmacokinetic study of bevacizumab in pediatric patients with refractory solid tumors: a Children's Oncology Group study,” Journal of Clinical Oncology, vol. 26, no. 3, pp. 399–405, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. K. Skubitz and P. Haddad, “Combination of pegylated-liposomal doxorubicin (PLD) and bevacizumab (B) (PLD-B) in sarcoma (SAR),” Journal of Clinical Oncology, vol. 25, no. 18, article 20506, supplement, ASCO Annual Meeting Proceedings Part I, 2007. View at Google Scholar
  83. B. H. Kushner and P. A. Meyers, “How effective is dose-intensive/myeloablative therapy against Ewing's sarcoma/primitive neuroectodermal tumor metastatic to bone or bone marrow? The Memorial Sloan-Kettering experience and a literature review,” Journal of Clinical Oncology, vol. 19, no. 3, pp. 870–880, 2001. View at Google Scholar · View at Scopus