Table of Contents
ISRN Preventive Medicine
Volume 2013, Article ID 763628, 13 pages
http://dx.doi.org/10.5402/2013/763628
Review Article

Candida Infections and Their Prevention

1Molecular Genetics Laboratory, School of Biotechnology, National Institute of Technology Calicut, Calicut 673601, India
2Department of Biological and Environmental Sciences, Alabama A&M University, Normal, AL 35762, USA

Received 13 September 2012; Accepted 4 October 2012

Academic Editors: R. G. Masterton, A. S. Mustafa, and M.-Y. Zhang

Copyright © 2013 M. Anaul Kabir and Zulfiqar Ahmad. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. C. Odds, Candida and Candidosis, Bailliere Tindall, London, UK, 2nd edition, 1988.
  2. M. H. Miceli, J. A. Díaz, and S. A. Lee, “Emerging opportunistic yeast infections,” The Lancet Infectious Diseases, vol. 11, no. 2, pp. 142–151, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. M. A. Pfaller, P. G. Pappas, and J. R. Wingard, “Invasive fungal pathogens: current epidemiological trends,” Clinical Infectious Diseases, vol. 43, no. 1, pp. S3–S14, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. L. S. Wilson, C. M. Reyes, M. Stolpman, J. Speckman, K. Allen, and J. Beney, “The direct cost and incidence of systemic fungal infections,” Value in Health, vol. 5, no. 1, pp. 26–34, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. J. D. Sobel, “Vaginitis,” The New England Journal of Medicine, vol. 337, no. 26, pp. 1896–1903, 1997. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Ruhnke, “Skin and mucous infections,” in Candida and Candidiasis, R. Calderone, Ed., pp. 307–325, ASM Press, Washington, DC, USA, 2002. View at Google Scholar
  7. M. A. Pfaller, R. N. Jones, S. A. Messer, M. B. Edmond, and R. P. Wenzel, “National surveillance of nosocomial blood stream infection due to Candidaalbicans: frequency of occurrence and antifungal susceptibility in the SCOPE program,” Diagnostic Microbiology and Infectious Disease, vol. 31, no. 1, pp. 327–332, 1998. View at Publisher · View at Google Scholar · View at Scopus
  8. C. C. Kibbler, S. Seaton, R. A. Barnes et al., “Management and outcome of bloodstream infections due to Candida species in England and Wales,” Journal of Hospital Infection, vol. 54, no. 1, pp. 18–24, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. M. A. Pfaller and D. J. Diekema, “Epidemiology of invasive candidiasis: a persistent public health problem,” Clinical Microbiology Reviews, vol. 20, no. 1, pp. 133–163, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. M. A. Pfaller, D. J. Diekema, L. Steele-Moore et al., “Twelve years of fluconazole in clinical practice: global-trends in species distribution and fluconazole susceptibility of bloodstream isolates of Candida,” Clinical Microbiology and Infection, vol. 10, supplement 1, pp. 11–23, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. M. A. Pfaller, D. J. Diekema, D. L. Gibbs et al., “Candida krusei, a multidrug-resistant opportunistic fungal pathogen: geographic and temporal trends from the ARTEMIS DISK Antifungal Surveillance Program, 2001 to 2005,” Journal of Clinical Microbiology, vol. 46, no. 2, pp. 515–521, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Budavari, The Merck Index, Merck & Co., Rahway, NJ, USA, 1989.
  13. A. K. Gupta, D. N. Sauder, and N. H. Shear, “Antifungal agents: an overview. Part I,” Journal of the American Academy of Dermatology, vol. 30, no. 5, pp. 677–698, 1994. View at Google Scholar · View at Scopus
  14. M. Borgers, “Mechanism of action of antifungal drugs, with special reference to the imidazole derivatives,” Reviews of Infectious Diseases, vol. 2, no. 4, pp. 520–534, 1980. View at Google Scholar · View at Scopus
  15. H. Van Den Bossche, J. M. Ruysschaert, and F. Defrise-Quertain, “The interaction of miconazole and ketoconazole with lipids,” Biochemical Pharmacology, vol. 31, no. 16, pp. 2609–2617, 1982. View at Publisher · View at Google Scholar · View at Scopus
  16. D. J. Sheehan, C. A. Hitchcock, and C. M. Sibley, “Current and emerging azole antifungal agents,” Clinical Microbiology Reviews, vol. 12, no. 1, pp. 40–79, 1999. View at Google Scholar · View at Scopus
  17. D. C. Lamb, D. E. Kelly, M. R. Waterman, M. Stromstedt, D. Rozman, and S. L. Kelly, “Characteristics of the heterologously expressed human lanosterol 14α-demethylase (other names: P45014DM, CYP51, P45051) and inhibition of the purified human and Candidaalbicans CYP51 with azole antifungal agents,” Yeast, vol. 15, no. 9, pp. 755–763, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. C. A. Hitchcock, K. Dickinson, S. B. Brown, E. G. V. Evans, and D. J. Adams, “Interaction of azole antifungal antibiotics with cytochrome P-450-dependent 14α-sterol demethylase purified from Candidaalbicans,” Biochemical Journal, vol. 266, no. 2, pp. 475–480, 1990. View at Google Scholar · View at Scopus
  19. R. Courtney, S. Pai, M. Laughlin, J. Lim, and V. Batra, “Pharmacokinetics, safety, and tolerability of oral posaconazole administered in single and multiple doses in healthy adults,” Antimicrobial Agents and Chemotherapy, vol. 47, no. 9, pp. 2788–2795, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. A. J. Carrillo-Muñoz, G. Giusiano, P. A. Ezkurra, and G. Quindós, “Antifungal agents: mode of action in yeast cells,” Revista Espanola de Quimioterapia, vol. 19, no. 2, pp. 130–139, 2006. View at Google Scholar · View at Scopus
  21. J. Bolard, “How do the polyene macrolide antibiotics affect the cellular membrane properties?” Biochimica et Biophysica Acta, vol. 864, no. 3-4, pp. 257–304, 1986. View at Google Scholar · View at Scopus
  22. M. Sokol-Anderson, J. E. Sligh, S. Elberg, J. Brajtburg, G. S. Kobayashi, and G. Medoff, “Role of cell defense against oxidative damage in the resistance of Candidaalbicans to the killing effect of amphotericin B,” Antimicrobial Agents and Chemotherapy, vol. 32, no. 5, pp. 702–705, 1988. View at Google Scholar · View at Scopus
  23. D. S. Perlin, “Current perspectives on echinocandin class drugs,” Future Microbiology, vol. 6, no. 4, pp. 441–457, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. N. A. Kartsonis, J. Nielsen, and C. M. Douglas, “Caspofungin: the first in a new class of antifungal agents,” Drug Resistance Updates, vol. 6, no. 4, pp. 197–218, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. P. H. Chandrasekar and J. D. Sobel, “Micafungin: a new echinocandin,” Clinical Infectious Diseases, vol. 42, no. 8, pp. 1171–1178, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. M. A. Pfaller, D. J. Diekema, L. Boyken et al., “Effectiveness of anidulafungin in eradicating Candida species in invasive candidiasis,” Antimicrobial Agents and Chemotherapy, vol. 49, no. 11, pp. 4795–4797, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. N. S. Ryder, “Mechanism of action and biochemical selectivity of allylamine antimycotic agent,” Annals of the New York Academy of Sciences, vol. 544, pp. 208–220, 1988. View at Google Scholar · View at Scopus
  28. A. Polak and M. Grenson, “Evidence for a common transport system for cytosine, adenine and hypoxanthine in Saccharomyces cerevisiae and Candidaalbicans,” European Journal of Biochemistry, vol. 32, no. 2, pp. 276–282, 1973. View at Google Scholar · View at Scopus
  29. A. Polak and H. J. Scholer, “Mode of action of 5 fluorocytosine and mechanisms of resistance,” Chemotherapy, vol. 21, no. 3-4, pp. 113–130, 1975. View at Google Scholar · View at Scopus
  30. R. A. Fromtling, “Overview of medically important antifungal azole derivatives,” Clinical Microbiology Reviews, vol. 1, no. 2, pp. 187–217, 1988. View at Google Scholar · View at Scopus
  31. H. Vanden Bossche, “Biochemical targets for antifungal azole derivatives: hypothesis on the mode of action,” Current Topics in Medical Mycology, vol. 1, pp. 313–351, 1985. View at Google Scholar · View at Scopus
  32. J. Xu, Y. Cao, J. Zhang et al., “Design, synthesis and antifungal activities of novel 1,2,4-triazole derivatives,” European Journal of Medicinal Chemistry, vol. 46, no. 7, pp. 3142–3148, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. M. A. Ghannoum and L. B. Rice, “Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance,” Clinical Microbiology Reviews, vol. 12, no. 4, pp. 501–517, 1999. View at Google Scholar · View at Scopus
  34. F. C. Odds, A. J. P. Brown, and N. A. R. Gow, “Antifungal agents: mechanisms of action,” Trends in Microbiology, vol. 11, no. 6, pp. 272–279, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. R. A. Akins, “An update on antifungal targets and mechanisms of resistance in Candidaalbicans,” Medical Mycology, vol. 43, no. 4, pp. 285–318, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. M. C. Cruz, A. L. Goldstein, J. R. Blankenship et al., “Calcineurin is essential for survival during membrane stress in Candidaalbicans,” The EMBO Journal, vol. 21, no. 4, pp. 546–559, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. F. Abe, K. Usui, and T. Hiraki, “Fluconazole modulates membrane rigidity, heterogeneity, and water penetration into the plasma membrane in Saccharomyces cerevisiae,” Biochemistry, vol. 48, no. 36, pp. 8494–8504, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Q. Zhang, S. Gamarra, G. Garcia-Effron, S. Park, D. S. Perlin, and R. Rao, “Requirement for ergosterol in V-ATPase function underlies antifungal activity of azole drugs,” PLoS Pathogens, vol. 6, no. 6, Article ID e1000939, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. F. C. Odds, A. Cockayne, J. Hayward, and A. B. Abbott, “Effects of imidazole- and triazole-derivative antifungal compounds on the growth and morphological development of Candidaalbicans hyphae,” Journal of General Microbiology, vol. 131, no. 10, pp. 2581–2589, 1985. View at Google Scholar · View at Scopus
  40. D. M. Arana, C. Nombela, and J. Pla, “Fluconazole at subinhibitory concentrations induces the oxidative- and nitrosative-responsive genes TRR1, GRE2 and YHB1, and enhances the resistance of Candidaalbicans to phagocytes,” The Journal of Antimicrobial Chemotherapy, vol. 65, no. 1, pp. 54–62, 2010. View at Google Scholar · View at Scopus
  41. J. Brajtburg, W. G. Powderly, G. S. Kobayashi, and G. Medoff, “Amphotericin B: current understanding of mechanisms of action,” Antimicrobial Agents and Chemotherapy, vol. 34, no. 2, pp. 183–188, 1990. View at Google Scholar · View at Scopus
  42. H. A. Gallis, R. H. Drew, and W. W. Pickard, “Amphotericin B: 30 years of clinical experience,” Reviews of Infectious Diseases, vol. 12, no. 2, pp. 308–329, 1990. View at Google Scholar · View at Scopus
  43. M. D. Moen, K. A. Lyseng-Williamson, and L. J. Scott, “Liposomal amphotericin B: a review of its use as empirical therapy in febrile neutropenia and in the treatment of invasive fungal infections,” Drugs, vol. 69, no. 3, pp. 361–392, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. N. Matsumori, K. Tahara, H. Yamamoto et al., “Direct interaction between amphotericin B and ergosterol in lipid bilayers as revealed by 2H NMR spectroscopy,” Journal of the American Chemical Society, vol. 131, no. 33, pp. 11855–11860, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. N. M. Witzke and R. Bittman, “Dissociation kinetics and equilibrium binding properties of polyene antibiotic complexes with phosphatidylcholine/sterol vesicles,” Biochemistry, vol. 23, no. 8, pp. 1668–1674, 1984. View at Google Scholar · View at Scopus
  46. R. Mouri, K. Konoki, N. Matsumori, T. Oishi, and M. Murata, “Complex formation of amphotericin B in sterol-containing membranes as evidenced by surface plasmon resonance,” Biochemistry, vol. 47, no. 30, pp. 7807–7815, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. R. S. Al-Dhaheri and L. J. Douglas, “Apoptosis in Candida biofilms exposed to amphotericin B,” Journal of Medical Microbiology, vol. 59, no. 2, pp. 149–157, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. M. L. Sokol-Anderson, J. Brajtburg, and G. Medoff, “Amphotericin B-induced oxidative damage and killing of Candidaalbicans,” Journal of Infectious Diseases, vol. 154, no. 1, pp. 76–83, 1986. View at Google Scholar · View at Scopus
  49. J. P. Adler-Moore and R. T. Proffitt, “Development, characterization, efficacy and mode of action of AmBisome, a unilamellar liposomal formulation of amphotericin B,” Journal of Liposome Research, vol. 3, no. 3, pp. 429–450, 1993. View at Google Scholar · View at Scopus
  50. F. Meunier, “New methods for delivery of antifungal agents,” Reviews of Infectious Diseases, vol. 11, pp. S1605–1612, 1989. View at Google Scholar · View at Scopus
  51. L. H. Hanson and D. A. Stevens, “Comparison of antifungal activity of amphotericin B deoxycholate suspension with that of amphotericin B cholesteryl sulfate colloidal dispersion,” Antimicrobial Agents and Chemotherapy, vol. 36, no. 2, pp. 486–488, 1992. View at Google Scholar · View at Scopus
  52. P. C. Gokhale, R. J. Barapatre, S. H. Advani, N. A. Kshirsagar, and S. K. Pandya, “Successful treatment of disseminated candidiasis reistant to amphotericin B by liposomal amphotericin B: a case report,” Journal of Cancer Research and Clinical Oncology, vol. 119, no. 10, pp. 569–571, 1993. View at Google Scholar · View at Scopus
  53. G. Lopez-Berestein, R. Mehta, and R. Hopfer, “Effects of sterols on the therapeutic efficacy of liposomal amphotericin B in murine candidiasis,” Cancer Drug Delivery, vol. 1, no. 1, pp. 37–42, 1983. View at Google Scholar · View at Scopus
  54. M. N. Oda, P. L. Hargreaves, J. A. Beckstead, K. A. Redmond, R. Van Antwerpen, and R. O. Ryan, “Reconstituted high density lipoprotein enriched with the polyene antibiotic amphotericin B,” Journal of Lipid Research, vol. 47, no. 2, pp. 260–267, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. N. Linder, G. Klinger, I. Shalit et al., “Treatment of Candidaemia in premature infants: comparison of three amphotericin B preparations,” Journal of Antimicrobial Chemotherapy, vol. 52, no. 4, pp. 663–667, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. J. S. Tkacz, “Glucan biosynthesis in fungi and its inhibition,” in Emerging Targets in Antibacterial and Antifungal Chemotherapy, J. Sutchliffe and N. H. Georgopapadakou, Eds., pp. 495–523, Chapman & Hall, New York, NY, USA, 1992. View at Google Scholar
  57. A. Cassone, R. E. Mason, and D. Kerridge, “Lysis of growing yeast-form cells of Candidaalbicans by echinocandin: a cytological study,” Sabouraudia Journal of Medical and Veterinary Mycology, vol. 19, no. 2, pp. 97–110, 1981. View at Google Scholar · View at Scopus
  58. T. J. Walsh, J. W. Lee, P. Kelly et al., “Antifungal effects of the nonlinear pharmacokinetics of cilofungin, a 1,3-β-glucan synthetase inhibitor, during continuous and intermittent intravenous infusions in treatment of experimental disseminated candidiasis,” Antimicrobial Agents and Chemotherapy, vol. 35, no. 7, pp. 1321–1328, 1991. View at Google Scholar · View at Scopus
  59. R. F. Hector, “Compounds active against cell walls of medically important fungi,” Clinical Microbiology Reviews, vol. 6, no. 1, pp. 1–21, 1993. View at Google Scholar · View at Scopus
  60. A. C. Reboli, A. F. Shorr, C. Rotstein et al., “Anidulafungin compared with fluconazole for treatment of candidemia and other forms of invasive candidiasis caused by Candidaalbicans: a multivariate analysis of factors associated with improved outcome,” BMC Infectious Diseases, vol. 11, article 261, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. N. S. Ryder and B. Favre, “Antifungal activity and mechanism of action of terbinafine,” Reviews in Contemporary Pharmacotherapy, vol. 8, no. 5, pp. 275–287, 1997. View at Google Scholar · View at Scopus
  62. B. Favre and N. S. Ryder, “Cloning and expression of squalene epoxidase from the pathogenic yeast Candidaalbicans,” Gene, vol. 189, no. 1, pp. 119–126, 1997. View at Publisher · View at Google Scholar · View at Scopus
  63. N. H. Georgopapadakou and A. Bertasso, “Effects of squalene epoxidase inhibitors on Candidaalbicans,” Antimicrobial Agents and Chemotherapy, vol. 36, no. 8, pp. 1779–1781, 1992. View at Google Scholar · View at Scopus
  64. A. K. Gupta, J. E. Ryder, and E. A. Cooper, “Naftifine: a review,” Journal of Cutaneous Medicine and Surgery, vol. 12, no. 2, pp. 51–58, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. C. Heidelberger, N. K. Chaudhuri, P. Danneberg et al., “Fluorinated pyrimidines, a new class of tumour-inhibitory compounds,” Nature, vol. 179, no. 4561, pp. 663–666, 1957. View at Publisher · View at Google Scholar · View at Scopus
  66. E. Titsworth and E. Grunberg, “Chemotherapeutic activity of 5-fluorocytosine and amphotericin B against Candidaalbicans in mice,” Antimicrobial Agents and Chemotherapy, vol. 4, no. 3, pp. 306–308, 1973. View at Google Scholar · View at Scopus
  67. D. Tassel and M. A. Madoff, “Treatment of Candida sepsis and Cryptococcus meningitis with 5-fluorocytosine. A new antifungal agent,” JAMA, vol. 206, no. 4, pp. 830–832, 1968. View at Publisher · View at Google Scholar · View at Scopus
  68. A. R. Waldorf and A. Polak, “Mechanisms of action of 5-fluorocytosine,” Antimicrobial Agents and Chemotherapy, vol. 23, no. 1, pp. 79–85, 1983. View at Google Scholar · View at Scopus
  69. R. B. Diasio, J. E. Bennett, and C. E. Myers, “Mode of action of 5-fluorocytosine,” Biochemical Pharmacology, vol. 27, no. 5, pp. 703–707, 1978. View at Publisher · View at Google Scholar · View at Scopus
  70. H. J. Scholer, “FlucytosineIn,” in Antifungal Chemotherapy, D. C. E. Speller, Ed., pp. 35–106, Wiley, Chichester, UK, 1980. View at Google Scholar
  71. A. Vermes, H. J. Guchelaar, and J. Dankert, “Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions,” Journal of Antimicrobial Chemotherapy, vol. 46, no. 2, pp. 171–179, 2000. View at Google Scholar · View at Scopus
  72. J. Morschhäuser, “Regulation of multidrug resistance in pathogenic fungi,” Fungal Genetics and Biology, vol. 47, no. 2, pp. 94–106, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. R. D. Cannon, E. Lamping, A. R. Holmes et al., “Efflux-mediated antifungal drug resistance,” Clinical Microbiology Reviews, vol. 22, no. 2, pp. 291–321, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. R. Prasad, P. De Wergifosse, A. Goffeau, and E. Balzi, “Molecular cloning and characterization of a novel gene of Candidaalbicans, CDR1, conferring multiple resistance to drugs and antifungals,” Current Genetics, vol. 27, no. 4, pp. 320–329, 1995. View at Publisher · View at Google Scholar · View at Scopus
  75. D. Sanglard, K. Kuchler, F. Ischer, J. L. Pagani, M. Monod, and J. Bille, “Mechanisms of resistance to azole antifungal agents in Candidaalbicans isolates from AIDS patients involve specific multidrug transporters,” Antimicrobial Agents and Chemotherapy, vol. 39, no. 11, pp. 2378–2386, 1995. View at Google Scholar · View at Scopus
  76. D. Sanglard, F. Ischer, M. Monod, and J. Bille, “Cloning of Candidaalbicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC transporter gene,” Microbiology, vol. 143, no. 2, pp. 405–416, 1997. View at Google Scholar · View at Scopus
  77. R. Prasad and A. Goffeau, “Yeast ATP-binding cassette transporters conferring multidrug resistance,” Annual Review of Microbiology, vol. 66, pp. 39–63, 2012. View at Google Scholar
  78. M. Niimi, K. Niimi, Y. Takano et al., “Regulated overexpression of CDR1 in Candidaalbicans confers multidrug resistance,” Journal of Antimicrobial Chemotherapy, vol. 54, no. 6, pp. 999–1006, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. R. J. P. Dawson and K. P. Locher, “Structure of a bacterial multidrug ABC transporter,” Nature, vol. 443, no. 7108, pp. 180–185, 2006. View at Publisher · View at Google Scholar · View at Scopus
  80. R. J. P. Dawson and K. P. Locher, “Structure of the multidrug ABC transporter Sav1866 from Staphylococcus aureus in complex with AMP-PNP,” FEBS Letters, vol. 581, no. 5, pp. 935–938, 2007. View at Publisher · View at Google Scholar · View at Scopus
  81. H. W. Pinkett, A. T. Lee, P. Lum, K. P. Locher, and D. C. Rees, “An inward-facing conformation of a putative metal-chelate-type ABC transporter,” Science, vol. 315, no. 5810, pp. 373–377, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. S. L. Kelly, D. C. Lamb, and D. E. Kelly, “Y132H substitution in Candidaalbicans sterol 14α-demethylase confers fluconazole resistance by preventing binding to haem,” FEMS Microbiology Letters, vol. 180, no. 2, pp. 171–175, 1999. View at Publisher · View at Google Scholar · View at Scopus
  83. D. C. Lamb, D. E. Kelly, T. C. White, and S. L. Kelly, “The R467K amino acid substitution in Candidaalbicans sterol 14α- demethylase causes drug resistance through reduced affinity,” Antimicrobial Agents and Chemotherapy, vol. 44, no. 1, pp. 63–67, 2000. View at Google Scholar · View at Scopus
  84. D. Sanglard, F. Ischer, L. Koymans, and J. Bille, “Amino acid substitutions in the cytochrome P-450 lanosterol 14α- demethylase (CYP51A1) from azole-resistant Candidaalbicans clinical isolates contribute to resistance to azole antifungal agents,” Antimicrobial Agents and Chemotherapy, vol. 42, no. 2, pp. 241–253, 1998. View at Google Scholar · View at Scopus
  85. M. Florent, T. Noël, G. Ruprich-Robert et al., “Nonsense and missense mutations in FCY2 and FCY1 genes are responsible for flucytosine resistance and flucytosine-fluconazole cross-resistance in clinical isolates of Candida lusitaniae,” Antimicrobial Agents and Chemotherapy, vol. 53, no. 7, pp. 2982–2990, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. N. Papon, T. Noël, M. Florent et al., “Molecular mechanism of flucytosine resistance in Candida lusitaniae: contribution of the FCY2, FCY1, and FUR1 genes to 5-fluorouracil and fluconazole cross-resistance,” Antimicrobial Agents and Chemotherapy, vol. 51, no. 1, pp. 369–371, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. A. R. Dodgson, K. J. Dodgson, C. Pujol, M. A. Pfaller, and D. R. Soll, “Clade-specific flucytosine resistance is due to a single nucleotide change in the FUR1 gene of Candidaalbicans,” Antimicrobial Agents and Chemotherapy, vol. 48, no. 6, pp. 2223–2227, 2004. View at Publisher · View at Google Scholar · View at Scopus
  88. W. W. Hope, L. Tabernero, D. W. Denning, and M. J. Anderson, “Molecular mechanisms of primary resistance to flucytosine in Candidaalbicans,” Antimicrobial Agents and Chemotherapy, vol. 48, no. 11, pp. 4377–4386, 2004. View at Publisher · View at Google Scholar · View at Scopus
  89. T. D. Edlind and S. K. Katiyar, “Mutational analysis of flucytosine resistance in Candidaglabrata,” Antimicrobial Agents and Chemotherapy, vol. 54, no. 11, pp. 4733–4738, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. B. A. McManus, G. P. Moran, J. A. Higgins, D. J. Sullivan, and D. C. Coleman, “A Ser29Leu substitution in the cytosine deaminase Fca1p is responsible for clade-specific flucytosine resistance in Candidadubliniensis,” Antimicrobial Agents and Chemotherapy, vol. 53, no. 11, pp. 4678–4685, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. D. S. Perlin, “Resistance to echinocandin-class antifungal drugs,” Drug Resistance Updates, vol. 10, no. 3, pp. 121–130, 2007. View at Publisher · View at Google Scholar · View at Scopus
  92. K. W. Garey, M. Rege, M. P. Pai et al., “Time to initiation of fluconazole therapy impacts mortality in patients with candidemia: a multi-institutional study,” Clinical Infectious Diseases, vol. 43, no. 1, pp. 25–31, 2006. View at Publisher · View at Google Scholar · View at Scopus
  93. M. T. Prospero and A. C. Reyes, “The efficacy of corn meal agar, soil extract agar and purified polysaccharide medium in the morphological identification of Candidaalbicans,” Acta Medica Philippina, vol. 12, no. 2, pp. 69–74, 1955. View at Google Scholar
  94. C. L. Taschdjian, J. J. Burchall, and P. J. Kozinn, “Rapid identification of Candidaalbicans by filamentation on serum and serum substitutes,” A.M.A. Journal of Diseases of Children, vol. 99, pp. 212–215, 1960. View at Google Scholar
  95. M. J. Denny and B. M. Partridge, “Tetrazolium medium as an aid in the routine diagnosis in Candida,” Journal of Clinical Pathology, vol. 21, no. 3, pp. 383–386, 1968. View at Google Scholar · View at Scopus
  96. K. R. Joshi, D. A. Bremner, D. N. Parr, and J. B. Gavin, “The morphological identification of pathogenic yeasts using carbohydrate media,” Journal of Clinical Pathology, vol. 28, no. 1, pp. 18–24, 1975. View at Google Scholar · View at Scopus
  97. A. M. Freydiere, R. Guinet, and P. Boiron, “Yeast identification in the clinical microbiology laboratory: phenotypical methods,” Medical Mycology, vol. 39, no. 1, pp. 9–33, 2001. View at Google Scholar · View at Scopus
  98. A. Laín, N. Elguezabal, S. Brena et al., “Diagnosis of invasive candidiasis by enzyme-linked immunosorbent assay using the N-terminal fragment of Candidaalbicans hyphal wall protein 1,” BMC Microbiology, vol. 7, article 35, 2007. View at Publisher · View at Google Scholar · View at Scopus
  99. A. R. Holmes, R. D. Cannon, M. G. Shepherd, and H. F. Jenkinson, “Detection of Candidaalbicans and other yeasts in blood by PCR,” Journal of Clinical Microbiology, vol. 32, no. 1, pp. 228–231, 1994. View at Google Scholar · View at Scopus
  100. T. Sakai, K. Ikegami, E. Yoshinaga, R. Uesugi-Hayakawa, and A. Wakizaka, “Rapid, sensitive and simple detection of Candida deep mycosis by amplification of 18s ribosomal RNA gene; Comparison with assay of serum β-D-glucan level in clinical samples,” Tohoku Journal of Experimental Medicine, vol. 190, no. 2, pp. 119–128, 2000. View at Google Scholar · View at Scopus
  101. H. G. M. Niesters, W. H. F. Goessens, J. F. M. G. Meis, and W. G. V. Quint, “Rapid, polymerase chain reaction-based identification assays for Candida species,” Journal of Clinical Microbiology, vol. 31, no. 4, pp. 904–910, 1993. View at Google Scholar · View at Scopus
  102. J. P. Burnie, N. Golbang, and R. C. Matthews, “Semiquantitative polymerase chain reaction enzyme immunoassay for diagnosis of disseminated candidiasis,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 16, no. 5, pp. 346–350, 1997. View at Publisher · View at Google Scholar · View at Scopus
  103. S. Nho, M. J. Anderson, C. B. Moore, and D. W. Denning, “Species differentiation by internally transcribed spacer PCR and HhaI digestion of fluconazole-resistant Candida krusei, Candida inconspicua, and Candidanorvegensis strains,” Journal of Clinical Microbiology, vol. 35, no. 4, pp. 1036–1039, 1997. View at Google Scholar · View at Scopus
  104. G. Morace, M. Sanguinetti, B. Posteraro, G. L. Cascio, and G. Fadda, “Identification of various medically important Candida species in clinical specimens by PCR-restriction enzyme analysis,” Journal of Clinical Microbiology, vol. 35, no. 3, pp. 667–672, 1997. View at Google Scholar · View at Scopus
  105. P. Burgener-Kairuz, J. P. Zuber, P. Jaunin, T. G. Buchman, J. Bille, and M. Rossier, “Rapid detection and identification of Candidaalbicans and Torulopsis (Candida) glabrata in clinical specimens by species-specific nested PCR amplification of a cytochrome P-450 lanosterol-α-demethylase (L1A1) gene fragment,” Journal of Clinical Microbiology, vol. 32, no. 8, pp. 1902–1907, 1994. View at Google Scholar · View at Scopus
  106. R. Wahyuningsih, H. J. Freisleben, H. G. Sonntag, and P. Schnitzler, “Simple and rapid detection of Candidaalbicans DNA in serum by PCR for diagnosis of invasive candidiasis,” Journal of Clinical Microbiology, vol. 38, no. 8, pp. 3016–3021, 2000. View at Google Scholar · View at Scopus
  107. P. L. White, A. Shetty, and R. A. Barnes, “Detection of seven Candida species using the Light-Cycler system,” Journal of Medical Microbiology, vol. 52, no. 3, pp. 229–238, 2003. View at Publisher · View at Google Scholar · View at Scopus
  108. M. C. Hsu, K. W. Chen, H. J. Lo et al., “Species identification of medically important fungi by use of real-time LightCycler PCR,” Journal of Medical Microbiology, vol. 52, no. 12, pp. 1071–1076, 2003. View at Publisher · View at Google Scholar · View at Scopus
  109. T. M. Pryce, I. D. Kay, S. Palladino, and C. H. Heath, “Real-time automated polymerase chain reaction (PCR) to detect Candidaalbicans and Aspergillus fumigatus DNA in whole blood from high-risk patients,” Diagnostic Microbiology and Infectious Disease, vol. 47, no. 3, pp. 487–496, 2003. View at Publisher · View at Google Scholar · View at Scopus
  110. A. Imhof, C. Schaer, G. Schoedon et al., “Rapid detection of pathogenic fungi from clinical specimens using LightCycler real-time fluorescence PCR,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 22, no. 9, pp. 558–560, 2003. View at Publisher · View at Google Scholar · View at Scopus
  111. L. Metwally, G. Hogg, P. V. Coyle et al., “Rapid differentiation between fluconazole-sensitive and -resistant species of Candida directly from positive blood-culture bottles by real-time PCR,” Journal of Medical Microbiology, vol. 56, no. 7, pp. 964–970, 2007. View at Publisher · View at Google Scholar · View at Scopus
  112. A. Innings, M. Ullberg, A. Johansson et al., “Multiplex real-time PCR targeting the RNase P RNA gene for detection and identification of Candida species in blood,” Journal of Clinical Microbiology, vol. 45, no. 3, pp. 874–880, 2007. View at Publisher · View at Google Scholar · View at Scopus
  113. M. Kasai, A. Francesconi, R. Petraitiene et al., “Use of quantitative real-time PCR to study the kinetics of extracellular DNA released from Candidaalbicans, with implications for diagnosis of invasive candidiasis,” Journal of Clinical Microbiology, vol. 44, no. 1, pp. 143–150, 2006. View at Publisher · View at Google Scholar · View at Scopus
  114. L. Pasqualini, A. Mencacci, C. Leli et al., “Diagnostic performance of a multiple real-time PCR assay in patients with suspected sepsis hospitalized in an internal medicine ward,” Journal of Clinical Microbiology, vol. 50, no. 4, pp. 1285–1288, 2012. View at Publisher · View at Google Scholar · View at Scopus
  115. C. Kühn, C. Disqué, H. Mühl, P. Orszag, M. Stiesch, and A. Haverich, “Evaluation of commercial universal rRNA gene PCR plus sequencing tests for identification of bacteria and fungi associated with infectious endocarditis,” Journal of Clinical Microbiology, vol. 49, no. 8, pp. 2919–2923, 2011. View at Publisher · View at Google Scholar · View at Scopus
  116. M. Karas and F. Hillenkamp, “Laser desorption ionization of proteins with molecular masses exceeding 10 000 daltons,” Analytical Chemistry, vol. 60, no. 20, pp. 2299–2301, 1988. View at Google Scholar · View at Scopus
  117. U. Pieles, W. Zurcher, M. Schar, and H. E. Moser, “Matrix-assisted laser desorption ionization time-of-flight mass spectrometry: a powerful tool for the mass and sequence analysis of natural and modified oligonucleotides,” Nucleic Acids Research, vol. 21, no. 14, pp. 3191–3196, 1993. View at Google Scholar · View at Scopus
  118. W. Mo, T. Takao, H. Sakamoto, and Y. Shimonishi, “Structural analysis of oligosaccharides derivatized with 4-aminobenzoic acid 2-(diethylamino)ethyl ester by matrix-assisted laser desorption/ionization mass spectrometry,” Analytical Chemistry, vol. 70, no. 21, pp. 4520–4526, 1998. View at Google Scholar · View at Scopus
  119. B. Fuchs and J. Schiller, “MALDI-TOF MS analysis of lipids from cells, tissues and body fluids,” Sub-Cellular Biochemistry, vol. 49, pp. 541–565, 2008. View at Google Scholar · View at Scopus
  120. M. A. Claydon, S. N. Davey, V. Edwards-Jones, and D. B. Gordon, “The rapid identification of intact microorganisms using mass spectrometry,” Nature Biotechnology, vol. 14, no. 11, pp. 1584–1586, 1996. View at Google Scholar · View at Scopus
  121. A. M. Haag, S. N. Taylor, K. H. Johnston, and R. B. Cole, “Rapid identification and speciation of Haemophilus bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry,” Journal of Mass Spectrometry, vol. 33, no. 8, pp. 750–756, 1998. View at Publisher · View at Google Scholar · View at Scopus
  122. J. Qian, J. E. Cutler, R. B. Cole, and Y. Cai, “MALDI-TOF mass signatures for differentiation of yeast species, strain grouping and monitoring of morphogenesis markers,” Analytical and Bioanalytical Chemistry, vol. 392, no. 3, pp. 439–449, 2008. View at Publisher · View at Google Scholar · View at Scopus
  123. C. Marinach-Patrice, A. Fekkar, R. Atanasova et al., “Rapid species diagnosis for invasive candidiasis using mass spectrometry,” PLoS ONE, vol. 5, no. 1, Article ID e8862, 2010. View at Publisher · View at Google Scholar · View at Scopus
  124. Y. Yan, Y. He, T. Maier et al., “Improved identification of yeast species directly from positive blood culture media by combining sepsityper specimen processing and microflex analysis with the matrix-assisted laser desorption ionization biotyper system,” Journal of Clinical Microbiology, vol. 49, no. 7, pp. 2528–2532, 2011. View at Publisher · View at Google Scholar · View at Scopus
  125. C. Santos, N. Lima, P. Sampaio, and C. Pais, “Matrix-assisted laser desorption/ionization time-of-flight intact cell mass spectrometry to detect emerging pathogenic Candida species,” Diagnostic Microbiology and Infectious Disease, vol. 71, no. 3, pp. 304–308, 2011. View at Publisher · View at Google Scholar · View at Scopus
  126. T. Spanu, B. Posteraro, B. Fiori et al., “Direct MALDI-TOF mass spectrometry assay of blood culture broths for rapid identification of Candida species causing bloodstream infections: an observational study in two large microbiology laboratories,” Journal of Clinical Microbiology, vol. 50, no. 1, pp. 176–179, 2012. View at Publisher · View at Google Scholar · View at Scopus
  127. B. Sendid, P. Ducoroy, N. Francois et al., “Evaluation of MALDI-TOF mass spectrometry for the identification of medically-important yeasts in the clinical laboratories of Dijon and Lille hospitals,” Medical Mycology. In press.
  128. Z. B. Zheng, Y. D. Wu, X. L. Yu, and S. Q. Shang, “DNA microarray technology for simultaneous detection and species identification of seven human herpes viruses,” Journal of Medical Virology, vol. 80, no. 6, pp. 1042–1050, 2008. View at Publisher · View at Google Scholar · View at Scopus
  129. S. F. Al-Khaldi, M. M. Mossoba, M. M. Allard, E. K. Lienau, and E. D. Brown, “Bacterial identification and subtyping using DNA microarray and DNA sequencing,” Methods in Molecular Biology, vol. 881, pp. 73–95, 2012. View at Publisher · View at Google Scholar · View at Scopus
  130. A. Aittakorpi, P. Kuusela, P. Koukila-Kähkölä et al., “Accurate and rapid identification of Candida, frequently associated with fungemia, by PCR and microarray-based PROVE-ITTM Sepsis assay,” Journal of Clinical Microbiology, vol. 50, no. 11, pp. 3635–3640, 2012. View at Google Scholar
  131. A. Huang, J. W. Li, Z. Q. Shen, X. W. Wang, and M. Jin, “High-throughput identification of clinical pathogenic fungi by hybridization to an oligonucleotide microarray,” Journal of Clinical Microbiology, vol. 44, no. 9, pp. 3299–3305, 2006. View at Publisher · View at Google Scholar · View at Scopus
  132. W. Lu, D. Gu, X. Chen et al., “Application of an oligonucleotide microarray-based nano-amplification technique for the detection of fungal pathogens,” Clinical Chemistry and Laboratory Medicine, vol. 48, no. 10, pp. 1507–1514, 2010. View at Publisher · View at Google Scholar · View at Scopus
  133. A. Cassone, F. De Bernardis, and A. Torososantucci, “An outline of the role of anti-Candida antibodies within the context of passive immunization and protection from candidiasis,” Current Molecular Medicine, vol. 5, no. 4, pp. 377–382, 2005. View at Publisher · View at Google Scholar · View at Scopus
  134. A. Cassone, F. De Bernardis, and G. Santoni, “AntiCandidal immunity and vaginitis: novel opportunities for immune intervention,” Infection and Immunity, vol. 75, no. 10, pp. 4675–4686, 2007. View at Publisher · View at Google Scholar · View at Scopus
  135. W. Magliani, S. Conti, A. Cassone, F. De Bernardis, and L. Polonelli, “New immunotherapeutic strategies to control vaginal candidiasis,” Trends in Molecular Medicine, vol. 8, no. 3, pp. 121–126, 2002. View at Publisher · View at Google Scholar · View at Scopus
  136. H. E. Rowlands, K. Morris, and C. Graham, “Human recombinant antibody against Candida,” Pediatric Infectious Disease Journal, vol. 25, no. 10, pp. 959–960, 2006. View at Publisher · View at Google Scholar · View at Scopus
  137. J. E. Cutler, “Defining criteria for anti-mannan antibodies to protect against candidiasis,” Current Molecular Medicine, vol. 5, no. 4, pp. 383–392, 2005. View at Publisher · View at Google Scholar · View at Scopus
  138. F. De Bernardis, M. Boccanera, D. Adriani, E. Spreghini, G. Santoni, and A. Cassone, “Protective role of antimannan and anti-aspartyl proteinase antibodies in an experimental model of Candidaalbicans vaginitis in rats,” Infection and Immunity, vol. 65, no. 8, pp. 3399–3405, 1997. View at Google Scholar · View at Scopus
  139. R. C. Matthews, G. Rigg, S. Hodgetts et al., “Preclinical assessment of the efficacy of mycograb, a human recombinant antibody against fungal HSP90,” Antimicrobial Agents and Chemotherapy, vol. 47, no. 7, pp. 2208–2216, 2003. View at Publisher · View at Google Scholar · View at Scopus
  140. H. Xin, S. Dziadek, D. R. Bundle, and J. E. Cutler, “Synthetic glycopeptide vaccines combining β-mannan and peptide epitopes induce protection against candidiasis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 36, pp. 13526–13531, 2008. View at Publisher · View at Google Scholar · View at Scopus
  141. Q. Yang, L. Wang, D. N. Lu et al., “Prophylactic vaccination with phage-displayed epitope of C. albicans elicits protective immune responses against systemic candidiasis in C57BL/6 mice,” Vaccine, vol. 23, no. 31, pp. 4088–4096, 2005. View at Publisher · View at Google Scholar · View at Scopus
  142. H. Xin and J. E. Cutler, “Vaccine and monoclonal antibody that enhance mouse resistance to candidiasis,” Clinical and Vaccine Immunology, vol. 18, no. 10, pp. 1656–1667, 2011. View at Google Scholar
  143. A. Torosantucci, P. Chiani, C. Bromuro et al., “Protection by anti-β-glucan antibodies is associated with restricted β-1,3 glucan binding specificity and inhibition of fungal growth and adherence,” PLoS ONE, vol. 4, no. 4, Article ID e5392, 2009. View at Publisher · View at Google Scholar · View at Scopus
  144. N. Kondori, L. Edebo, and I. Mattsby-Baltzer, “A novel monoclonal antibody recognizing β(1-3) glucans in intact cells of Candida and Cryptococcus,” APMIS, vol. 116, no. 10, pp. 867–876, 2008. View at Publisher · View at Google Scholar · View at Scopus
  145. R. Herbrecht, C. Fohrer, and Y. Nivoix, “Mycograb for the treatment of invasive candidiasis,” Clinical Infectious Diseases, vol. 43, no. 8, article 1083, 2006. View at Google Scholar · View at Scopus
  146. D. L. Richie, M. A. Ghannoum, N. Isham, K. V. Thompson, and N. S. Ryder, “Nonspecific effect of mycograb on amphotericin B MIC,” Antimicrobial Agents and Chemotherapy, vol. 56, no. 7, pp. 3963–3964, 2012. View at Publisher · View at Google Scholar · View at Scopus
  147. B. Wirk, “Heat shock protein inhibitors for the treatment of fungal infections,” Recent Patents on Anti-Infective Drug Discovery, vol. 6, no. 1, pp. 38–44, 2011. View at Publisher · View at Google Scholar · View at Scopus
  148. J. Cabezas, O. Albaina, D. Montaez, M. J. Sevilla, M. D. Moragues, and J. Pontn, “Potential of anti-Candida antibodies in immunoprophylaxis,” Immunotherapy, vol. 2, no. 2, pp. 171–183, 2010. View at Publisher · View at Google Scholar · View at Scopus
  149. Z. Krenova, Z. Pavelka, P. Lokaj et al., “Successful treatment of life-threatening Candidaperitonitis in a child with abdominal non-hodgkin lymphoma using efungumab and amphotericin B colloid dispersion,” Journal of Pediatric Hematology/Oncology, vol. 32, no. 2, pp. 128–130, 2010. View at Publisher · View at Google Scholar · View at Scopus
  150. R. Karwa and K. A. Wargo, “Efungumab: a novel agent in the treatment of invasive candidiasis,” Annals of Pharmacotherapy, vol. 43, no. 11, pp. 1818–1823, 2009. View at Publisher · View at Google Scholar · View at Scopus
  151. F. C. Odds, “Interactions among amphotericin B, 5-fluorocytosine, ketoconazole, and miconazole against pathogenic fungi in vitro,” Antimicrobial Agents and Chemotherapy, vol. 22, no. 5, pp. 763–770, 1982. View at Google Scholar · View at Scopus
  152. K. R. Smith, K. M. Lank, W. E. Dismukes, and C. G. Cobbs, “In vitro comparison of cilofungin alone and in combination with other antifungal agents against clinical isolates of Candida species,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 10, no. 7, pp. 588–592, 1991. View at Google Scholar · View at Scopus
  153. A. Polak, “Combination therapy of experimental candidiasis, cryptococcosis, aspergillosis and wangiellosis in mice,” Chemotherapy, vol. 33, no. 5, pp. 381–395, 1987. View at Google Scholar · View at Scopus
  154. M. Scheven, K. Junemann, H. Schramm, and W. Huhn, “Successful treatment of a Candidaalbicans sepsis with a combination of flucytosine and fluconazole,” Mycoses, vol. 35, no. 11-12, pp. 315–316, 1992. View at Google Scholar · View at Scopus
  155. A. Tavanti, G. Maisetta, G. Del Gaudio et al., “Fungicidal activity of the human peptide hepcidin 20 alone or in combination with other antifungals against Candidaglabrata isolates,” Peptides, vol. 32, no. 12, pp. 2484–2487, 2011. View at Publisher · View at Google Scholar · View at Scopus
  156. A. R. Holmes, Y. H. Lin, K. Niimi et al., “ABC transporter Cdr1p contributes more than Cdr2p does to fluconazole efflux in fluconazole-resistant Candidaalbicans clinical isolates,” Antimicrobial Agents and Chemotherapy, vol. 52, no. 11, pp. 3851–3862, 2008. View at Publisher · View at Google Scholar · View at Scopus
  157. E. Lamping, B. C. Monk, K. Niimi et al., “Characterization of three classes of membrane proteins involved in fungal azole resistance by functional hyperexpression in Saccharomyces cerevisiae,” Eukaryotic Cell, vol. 6, no. 7, pp. 1150–1165, 2007. View at Publisher · View at Google Scholar · View at Scopus
  158. C. Gauthier, S. Weber, A. M. Alarco et al., “Functional similarities and differences between Candidaalbicans Cdr1p and Cdr2p transporters,” Antimicrobial Agents and Chemotherapy, vol. 47, no. 5, pp. 1543–1554, 2003. View at Publisher · View at Google Scholar · View at Scopus
  159. K. Tanabe, E. Lamping, K. Adachi et al., “Inhibition of fungal ABC transporters by unnarmicin A and unnarmicin C, novel cyclic peptides from marine bacterium,” Biochemical and Biophysical Research Communications, vol. 364, no. 4, pp. 990–995, 2007. View at Publisher · View at Google Scholar · View at Scopus
  160. K. Hayama, H. Ishibashi, S. A. Ishijima et al., “A d-octapeptide drug efflux pump inhibitor acts synergistically with azoles in a murine oral candidiasis infection model,” FEMS Microbiology Letters, vol. 328, no. 2, pp. 130–137, 2012. View at Publisher · View at Google Scholar · View at Scopus
  161. A. R. Holmes, M. V. Keniya, I. Ivnitski-Steele et al., “The monoamine oxidase A inhibitor clorgyline is a broad-spectrum inhibitor of fungal ABC and MFS transporter efflux pump activities which reverses the azole resistance of Candidaalbicans and Candidaglabrata clinical isolates,” Antimicrobial Agents and Chemotherapy, vol. 56, no. 3, pp. 1508–1515, 2012. View at Publisher · View at Google Scholar · View at Scopus