Table of Contents
ISRN Cardiology
Volume 2013 (2013), Article ID 781762, 8 pages
http://dx.doi.org/10.1155/2013/781762
Research Article

Development of a Closed Chest Model of Chronic Myocardial Infarction in Swine: Magnetic Resonance Imaging and Pathological Evaluation

1Jesús Usón Minimally Invasive Surgery Centre, Carretera N-521, Km 41.8, 10071 Cáceres, Spain
2Las Palmas de Gran Canaria University (ULPGC), C/Juan de Quesada No. 30, 35001 Las Palmas de Gran Canaria, Spain

Received 11 August 2013; Accepted 12 September 2013

Academic Editors: W. Bloch, J. A. F. Ramires, and D. Weihrauch

Copyright © 2013 Verónica Crisóstomo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. S. Go, D. Mozzafarian, V. L. Roger, E. J. Benjamin, J. D. Berry, W. B. Borden et al., “Heart disease and stroke statistics-2013 update,” Circulation, vol. 127, pp. e6–e245, 2013. View at Google Scholar
  2. R. S. Velagaleti, M. J. Pencina, J. M. Murabito et al., “Long-term trends in the incidence of heart failure after myocardial infarction,” Circulation, vol. 118, no. 20, pp. 2057–2062, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. E. Monnet and J. C. Chachques, “Animal models of heart failure: what is new?” Annals of Thoracic Surgery, vol. 79, no. 4, pp. 1445–1453, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Sakaguchi, Y. Sakakibara, K. Tambara et al., “A pig model of chronic heart failure by intracoronary embolization with gelatin sponge,” Annals of Thoracic Surgery, vol. 75, no. 6, pp. 1942–1947, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Suzuki, A. C. Yeung, and F. Ikeno, “The representative porcine model for human cardiovascular disease,” Journal of Biomedicine and Biotechnology, vol. 2011, Article ID 195483, 11 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Suzuki, J. K. Lyons, A. C. Yeung, and F. Ikeno, “In vivo porcine model of reperfused myocardial infarction: in situ double staining to measure precise infarct area/area at risk,” Catheterization and Cardiovascular Interventions, vol. 71, no. 1, pp. 100–107, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Doyle, B. J. Kemp, P. Chareonthaitawee et al., “Dynamic tracking during intracoronary injection of18F-FDG- labeled progenitor cell therapy for acute myocardial infarction,” Journal of Nuclear Medicine, vol. 48, no. 10, pp. 1708–1714, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. C. E. Rochitte, R. J. Kim, H. B. Hillenbrand, E.-L. Chen, and J. A. C. Lima, “Microvascular integrity and the time course of myocardial sodium accumulation after acute infarction,” Circulation Research, vol. 87, no. 8, pp. 648–655, 2000. View at Google Scholar · View at Scopus
  9. T. Sasano, K. Kelemen, I. D. Greener, and J. K. Donahue, “Ventricular tachycardia from the healed myocardial infarction scar: validation of an animal model and utility of gene therapy,” Heart Rhythm, vol. 6, no. 8, pp. S91–S97, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. U. Sigwart, “Non-surgical myocardial reduction for hypertrophic obstructive cardiomyopathy,” The Lancet, vol. 346, no. 8969, pp. 211–214, 1995. View at Google Scholar · View at Scopus
  11. J. Veselka, R. Duchoňová, J. Páleníčkova et al., “Impact of ethanol dosing on the long-term outcome of alcohol septal ablation for obstructive hypertrophic cardiomyopathy: a single-center, prospective, and randomized study,” Circulation Journal, vol. 70, no. 12, pp. 1550–1552, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. Z. Q. Li, T. O. Cheng, L. Liu et al., “Experimental study of relationship between intracoronary alcohol injection and the size of resultant myocardial infarct,” International Journal of Cardiology, vol. 91, no. 1, pp. 93–96, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. D. E. Haines, J. G. Whayne, and J. P. DiMarco, “Intracoronary ethanol ablation in swine: effects of ethanol concentration on lesion formation and response to programmed ventricular stimulation,” Journal of Cardiovascular Electrophysiology, vol. 5, no. 5, pp. 422–431, 1994. View at Google Scholar · View at Scopus
  14. K. Thygesen, J. S. Alpert, and H. D. White, “On behalf of the Joint ESC/ACCF/AHA/WHF task force for the redefinition of myocardial infarction. Universal definition of myocardial infarction,” American College of Cardiology Foundation, vol. 50, no. 22, pp. 2173–2195, 2007. View at Google Scholar
  15. G. A. Krombach, S. Kinzel, A. H. Mahnken, R. W. Günther, and A. Buecker, “Minimally invasive close-chest method for creating reperfused or occlusive myocardial infarction in swine,” Investigative Radiology, vol. 40, no. 1, pp. 14–18, 2005. View at Google Scholar · View at Scopus
  16. J. A. Dixon and F. G. Spinale, “Large animal models of heart failure,” Circulation, vol. 2, no. 3, pp. 262–271, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. F. S. Angeli, M. Shapiro, N. Amabile et al., “Left ventricular remodeling after myocardial infarction: characterization of a swine model on β-blocker therapy,” Comparative Medicine, vol. 59, no. 3, pp. 272–279, 2009. View at Google Scholar · View at Scopus
  18. W. Kim, M. H. Jeong, D. S. Sim et al., “A porcine model of ischemic heart failure produced by intracoronary injection of ethyl alcohol,” Heart and Vessels, vol. 26, no. 3, pp. 342–348, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. H. H. Klein, M. Schubothe, K. Nebendahl, and H. Kreuzer, “Temporal and spatial development of infarcts in porcine hearts,” Basic Research in Cardiology, vol. 79, no. 4, pp. 440–447, 1984. View at Google Scholar · View at Scopus
  20. K. H. Schuleri, A. J. Boyle, M. Centola et al., “The adult göttingen minipig as a model for chronic heart failure after myocardial infarction: focus on cardiovascular imaging and regenerative therapies,” Comparative Medicine, vol. 58, no. 6, pp. 568–579, 2008. View at Google Scholar · View at Scopus
  21. D. W. D. Kuster, D. Merkus, A. Kremer et al., “Left ventricular remodeling in swine after myocardial infarction: a transcriptional genomics approach,” Basic Research in Cardiology, vol. 106, no. 6, pp. 1269–1281, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. M. P. Maxwell, D. J. Hearse, and D. M. Yellon, “Species variation in the coronary collateral circulation during regional myocardial ischaemia: a critical determinant of the rate of evolution and extent of myocardial infarction,” Cardiovascular Research, vol. 21, no. 10, pp. 737–746, 1987. View at Google Scholar · View at Scopus
  23. K. A. Reimer and R. B. Jennings, “The changing anatomic reference base of evolving myocardial infarction. Underestimation of myocardial collateral blood flow and overestimation of experimental anatomic infarct size due to tissue edema, hemorrhage and acute inflammation,” Circulation, vol. 60, no. 4, pp. 866–876, 1979. View at Google Scholar · View at Scopus
  24. L. C. Amado, A. P. Saliaris, K. H. Schuleri et al., “Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 32, pp. 11474–11479, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Dubois, X. Liu, P. Claus et al., “Differential effects of progenitor cell populations on left ventricular remodeling and myocardial neovascularization after myocardial infarction,” Journal of the American College of Cardiology, vol. 55, no. 20, pp. 2232–2243, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. S. M. Hashemi, S. Ghods, F. D. Kolodgie et al., “A placebo controlled, dose-ranging, safety study of allogenic mesenchymal stem cells injected by endomyocardial delivery after an acute myocardial infarction,” European Heart Journal, vol. 29, no. 2, pp. 251–259, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. D. L. Kraitchman, A. W. Heldman, E. Atalar et al., “In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction,” Circulation, vol. 107, no. 18, pp. 2290–2293, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Perez de Prado, C. Cuellas-Ramon, M. Regueiro-Purrinos et al., “Closed-chest experimental porcine model of acute myocardial infarction-reperfusion,” Journal of Pharmacological and Toxicological Methods, vol. 60, no. 3, pp. 301–306, 2009. View at Google Scholar
  29. O. Turschner, J. D'hooge, C. Dommke et al., “The sequential changes in myocardial thickness and thickening which occur during acute transmural infarction, infarct reperfusion and the resultant expression of reperfusion injury,” European Heart Journal, vol. 25, no. 9, pp. 794–803, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. D. L. Kraitchman, D. A. Bluemke, B. B. Chin, A. W. Heldman, and A. W. Heldman, “A minimally invasive method for creating coronary stenosis in a swine model for MRI and SPECT imaging,” Investigative Radiology, vol. 35, no. 7, pp. 445–451, 2000. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Eldar, A. P. Fitzpatrick, D. Ohad et al., “Percutaneous multielectrode endocardial mapping during ventricular tachycardia in the swine model,” Circulation, vol. 94, no. 5, pp. 1125–1130, 1996. View at Google Scholar · View at Scopus
  32. A. Varga-Szemes, P. Kiss, B. C. Brott, D. Wang, T. Simor, and G. A. Elgavish, “Embozene microspheres induced nonreperfused myocardial infarction in an experimental swine model,” Catheterization and Cardiovascular Interventions, vol. 81, no. 4, pp. 689–697, 2013. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Reffelmann, O. Sensebat, Y. Birnbaum et al., “A novel minimal-invasive model of chronic myocardial infarction in swine,” Coronary Artery Disease, vol. 15, no. 1, pp. 7–12, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Tomita, D. A. G. Mickle, R. D. Weisel et al., “Improved heart function with myogenesis and angiogenesis after autologous porcine bone marrow stromal cell transplantation,” Journal of Thoracic and Cardiovascular Surgery, vol. 123, no. 6, pp. 1132–1140, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Zollikofer, W. Castaneda-Zuniga, and Z. Vlodaver, “Experimental myocardial infarction in the closed-chest dog: a new technique,” Investigative Radiology, vol. 16, no. 1, pp. 7–12, 1981. View at Google Scholar · View at Scopus
  36. T. M. Joudinaud, C. L. Kegel, A. A. Gabster et al., “An experimental method for the percutaneous induction of a posterolateral infarct and functional ischemic mitral regurgitation,” Journal of Heart Valve Disease, vol. 14, no. 4, pp. 460–466, 2005. View at Google Scholar · View at Scopus
  37. W. G. Hundley, D. A. Bluemke, J. P. Finn et al., “ACCF/ACR/AHA/NASCI/SCMR, 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents,” Circulation, vol. 121, no. 22, pp. 2462–2508, 2010. View at Publisher · View at Google Scholar
  38. T. Deneke, K.-M. Müller, B. Lemke et al., “Human histopathology of electroanatomic mapping after cooled-tip radiofrequency ablation to treat ventricular tachycardia in remote myocardial infarction,” Journal of Cardiovascular Electrophysiology, vol. 16, no. 11, pp. 1246–1251, 2005. View at Publisher · View at Google Scholar · View at Scopus