Table of Contents
ISRN Computational Biology
Volume 2013 (2013), Article ID 790240, 6 pages
http://dx.doi.org/10.1155/2013/790240
Research Article

Zebra Finch Glucokinase Containing Two Homologous Halves Is an In Silico Chimera

1Department of General Chemistry, Belarusian State Medical University, Dzerzinskogo 83, 220116 Minsk, Belarus
2Department of Clinical Laboratory Diagnostics, Allergology and Immunology, Grodno State Medical University, Gorkogo 80, 230009 Grodno, Belarus

Received 9 September 2013; Accepted 29 September 2013

Academic Editors: P. Durrens and A. Fedorov

Copyright © 2013 Khrustalev Vladislav Victorovich et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. M. Irwin and H. Tan, “Molecular evolution of the vertebrate hexokinase gene family: identification of a conserved fifth vertebrate hexokinase gene,” Comparative Biochemistry and Physiology D, vol. 3, no. 1, pp. 96–107, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. H. J. Tsai, “Functional organization and evolution of mammalian hexokinases: mutations that caused the loss of catalytic activity in N-terminal halves of type I and type III isozymes,” Archives of Biochemistry and Biophysics, vol. 369, no. 1, pp. 149–156, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. K. J. Ahn, J. Kim, M. Yun, J. H. Park, and J. D. Lee, “Enzymatic properties of the N-and C-terminal halves of human hexokinase II,” BMB Reports, vol. 42, no. 6, pp. 350–355, 2009. View at Google Scholar · View at Scopus
  4. M. L. Cárdenas, A. Cornish-Bowden, and T. Ureta, “Evolution and regulatory role of the hexokinases,” Biochimica et Biophysica Acta, vol. 1401, no. 3, pp. 242–264, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. V. V. Khrustalev, M. Arjomandzadegan, E. V. Barkovsky, and L. P. Titov, “Low rates of synonymous mutations in sequences of mycobacterium tuberculosis GyrA and KatG genes,” Tuberculosis, vol. 92, no. 4, pp. 333–344, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Flicek, M. R. Amode, and K. Beal, “Ensembl 2012,” Nucleic Acids Research, vol. 40, pp. D84–D90, 2012. View at Publisher · View at Google Scholar
  7. R. A. George and J. Heringa, “The REPRO server: finding protein internal sequence repeats through the web,” Trends in Biochemical Sciences, vol. 25, no. 10, pp. 515–517, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar, “MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods,” Molecular Biology and Evolution, vol. 28, no. 10, pp. 2731–2739, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. D. T. Jones, W. R. Taylor, and J. M. Thornton, “The rapid generation of mutation data matrices from protein sequences,” Computer Applications in the Biosciences, vol. 8, no. 3, pp. 275–282, 1992. View at Google Scholar · View at Scopus
  10. M. Nei and S. Kumar, Molecular Evolution and Phylogenetics, Oxford University Press, New York, NY, USA, 2000.
  11. N. Sueoka, “Directional mutation pressure and neutral molecular evolution,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 8, pp. 2653–2657, 1988. View at Google Scholar · View at Scopus
  12. O. K. Clay and G. Bernardi, “GC3 of genes can be used as a proxy for isochore base composition: a reply to Elhaik et al,” Molecular Biology and Evolution, vol. 28, no. 1, pp. 21–23, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. V. V. Khrustalev and E. V. Barkovsky, “An in-silico study of alphaherpesviruses ICP0 genes: positive selection or strong mutational GC-pressure?” IUBMB Life, vol. 60, no. 7, pp. 456–460, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Costantini and G. Bernardi, “Replication timing, chromosomal bands, and isochores,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 9, pp. 3433–3437, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. S. V. Lelevich, V. V. Khrustalev, E. V. Barkovsky, and T. A. Shedogubova, “The influence of ethanol on pyruvate kinases activity in vivo, in vitro, in silico,” American Journal of Medical and Biological Research, vol. 1, pp. 6–15, 2013. View at Google Scholar