Table of Contents
ISRN Nanotechnology
Volume 2013 (2013), Article ID 792105, 6 pages
http://dx.doi.org/10.1155/2013/792105
Research Article

Comparative Study on the Synergistic Action of Garlic Synthesized and Citrate Capped Silver Nanoparticles with β-Penem Antibiotics

1Centre for Nanoscience and Nanotechnology, University of Kerala, Thiruvananthapuram, Kerala 695 581, India
2Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala 695 581, India

Received 19 June 2013; Accepted 28 July 2013

Academic Editors: L. Baia and Y. Song

Copyright © 2013 Neethu Hari et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. S. Wilke, A. L. Lovering, and N. C. J. Strynadka, “β-Lactam antibiotic resistance: a current structural perspective,” Current Opinion in Microbiology, vol. 8, no. 5, pp. 525–533, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Li, J. Li, C. Wu, Q. Wu, and J. Li, “Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles,” Nanotechnology, vol. 16, no. 9, pp. 1912–1917, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. K.-H. Cho, J.-E. Park, T. Osaka, and S.-G. Park, “The study of antimicrobial activity and preservative effects of nanosilver ingredient,” Electrochimica Acta, vol. 51, no. 5, pp. 956–960, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” Journal of Physical Chemistry, vol. 86, no. 17, pp. 3391–3395, 1982. View at Google Scholar · View at Scopus
  5. A. M. Fayaz, K. Balaji, M. Girilal, R. Yadav, P. T. Kalaichelvan, and R. Venketesan, “Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria,” Nanomedicine, vol. 6, no. 1, pp. e103–e109, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. K. S. Mukunthan, E. K. Elumalai, T. N. Patel, and V. R. Murty, “Catharanthus roseus: a natural source for the synthesis of silver nanoparticles,” Asian Pacific Journal of Tropical Biomedicine, vol. 1, no. 4, pp. 270–274, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Baset, H. Akbari, H. Zeynali, and M. Shafie, “Size measurement of metal and semiconductor nanoparticles via UV-Vis absorption spectra,” Digest Journal of Nanomaterials and Biostructures, vol. 6, no. 2, pp. 709–716, 2011. View at Google Scholar · View at Scopus
  8. K. I. Batarseh, “Anomaly and correlation of killing in the therapeutic properties of siliver (I) chelation with glutamic and tartaric acids,” Journal of Antimicrobial Chemotherapy, vol. 54, no. 2, pp. 546–548, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. S. P. Dhas, A. Mukherjee, and N. Chandrasekaran, “Synergistic effect of biogenic silver nanocolloid in combination with antibiotics: a potent therapeutic agent,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 5, pp. 292–295, 2013. View at Google Scholar
  10. M. A. Dar, A. Ingle, and M. Rai, “Enhanced antimicrobial activity of silver nanoparticles synthesized by Cryphonectria sp. evaluated singly and in combination with antibiotics,” Nanomedicine, vol. 9, pp. 105–110, 2013. View at Google Scholar
  11. R. M. Bhande, C. N. Khobragade, R. S. Mane, and S. Bhande, “Enhanced synergism of antibiotics with zinc oxide nanoparticles against extended spectrum b-lactamase producers implicated in urinary tract infections,” Journal of Nanoparticle Research, vol. 15, p. 1413, 2013. View at Google Scholar