Table of Contents
ISRN Mathematical Analysis
Volume 2013, Article ID 816353, 9 pages
http://dx.doi.org/10.1155/2013/816353
Research Article

Time-Delayed Interactions in Networks of Self-Adapting Hopf Oscillators

1Fakultät für Physik, Universität Bielefeld, 33501 Bielefeld, Germany
2STI/IMT/LPM, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland

Received 30 August 2012; Accepted 24 September 2012

Academic Editors: A. Carpio, J. V. Stokman, and C. Zhu

Copyright © 2013 Julio Rodriguez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. A. Shabana, Theory of Vibration: An Introduction, Mechanical Engineering Series, Springer, New York, NY, USA, 1996.
  2. M. Lakshmanan and S. Rajasekar, Nonlinear Dynamics: Integrability, Chaos and Patterns, Advanced Texts in Physics, Springer, New York, NY, USA, 2003. View at Publisher · View at Google Scholar
  3. J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, vol. 42 of Applied Mathematical Sciences, Springer, New York, NY, USA, 1990.
  4. J. Buchli, Ijspeert, and A. J. A. Simple, “Adaptive locomotion toy-system,” in Proceedings of the 8th International Conference on the Simulation of Adaptive Behavior (SAB'04), 2004.
  5. L. Righetti, J. Buchli, and A. J. Ijspeert, “Dynamic Hebbian learning in adaptive frequency oscillators,” Physica D, vol. 216, no. 2, pp. 269–281, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  6. R. Ronsse, N. Vitiello, T. Lenzi, J. van den Kieboom, M. C. Carrozza, and A. J. Ijspeert, “Human-robot synchrony: flexible assistance using adaptive oscillators,” IEEE Transactions on Biomedical Engineering, vol. 58, no. 4, pp. 1001–1012, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Rodriguez and M. O. Hongler, “Networks of mixed canonical-dissipative systems and dynamic hebbian learning,” International Journal of Computational Intelligence Systems, vol. 2, no. 2, pp. 140–146, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Rodriguez and M. O. Hongler, “Networks of limit cycle oscillators with parametric learning capability,” in Recent Advances in Nonlinear Dynamics and Synchronization: Theory and Applications, K. Kyamakya, W. A. Halang, H. Unger, J. C. Chedjou, N. F. Rulkov, and Z. Li, Eds., pp. 17–48, Springer, Berlin, Germany, 2009. View at Google Scholar
  9. S. Steingrube, M. Timme, F. Wörgötter, and P. Manoonpong, “Self-organized adaptation of a simple neural circuit enables complex robot behaviour,” Nature Physics, vol. 6, no. 3, pp. 224–230, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. A. A. Selivanov, J. Lehnert, T. Dahms, P. Hövel, A. L. Fradkov, and E. Schöll, “Adaptive synchronization in delay-coupled networks of Stuart-Landau oscillators,” Physical Review E, vol. 85, no. 1, Article ID 016201, 8 pages, 2012. View at Publisher · View at Google Scholar
  11. S. Gerschgorin, “Über die Abgrenzung der Eigenwerte einer Matrix,” IzvestIya AkademII Nauk USSR, OtdelenIe MatematIcheskIh I estestvennIh Nauk, vol. 7, pp. 749–754, 1931. View at Google Scholar
  12. J. Rodriguez, Networks of self-adaptive dynamical systems [Ph.D. thesis], Ecole Polythechnique Fédérale de Lausanne, 2011.
  13. M. K. S. Yeung and S. H. Strogatz, “Time delay in the Kuramoto model of coupled oscillators,” Physical Review Letters, vol. 82, no. 3, pp. 648–651, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Montbrió, D. Pazó, and J. Schmidt, “Time delay in the Kuramoto model with bimodal frequency distribution,” Physical Review E, vol. 74, no. 5, Article ID 056201, 5 pages, 2006. View at Publisher · View at Google Scholar
  15. R. Bellman and K. L. Cooke, Delay Differential Equations with Applications in Populations Dynamics, Academic Press, New York, NY, USA, 1963. View at Zentralblatt MATH
  16. B. Cahlon and D. Schmidt, “Stability criteria for certain second order delay differential equations,” Dynamics of Continuous, Discrete & Impulsive Systems, vol. 10, no. 4, pp. 593–621, 2003. View at Google Scholar · View at Zentralblatt MATH
  17. J. Rodriguez, M. O. Hongler, and P. Blanchard, “Self-adaptive attractor-shaping for oscillators networks,” in Proceedings of the Joint INDS'11 & ISTET'11—3rd International Workshop on nonlinear Dynamics and Synchronization and 6th International Symposium on Theoretical Electrical Engineering, 2011.
  18. Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, vol. 191 of Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1993.
  19. J. Han, M. Li, and L. Guo, “Soft control on collective behavior of a group of autonomous agents by a shill agent,” Journal of Systems Science & Complexity, vol. 19, no. 1, pp. 54–62, 2006. View at Publisher · View at Google Scholar