Table of Contents
ISRN Inflammation
Volume 2013 (2013), Article ID 817901, 8 pages
http://dx.doi.org/10.1155/2013/817901
Clinical Study

Perioperative Dynamics of TLR2, TLR4, and TREM-1 Expression in Monocyte Subpopulations in the Setting of On-Pump Coronary Artery Bypass Surgery

1Research Institute for Complex Issues of Cardiovascular Diseases under the Siberian Branch of the Russian Academy of Medical Sciences, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
2Research Institute for Experimental Medicine under the NorthWest Branch of the Russian Academy of Medical Sciences, Saint Petersburg, Russia

Received 11 January 2013; Accepted 19 February 2013

Academic Editors: G.-M. Deng and F. M. Kovar

Copyright © 2013 A. S. Golovkin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Q. Mei, Q. Ji, H. Liu et al., “Study on the relationship of APACHE III and levels of cytokines in patients with systemic inflammatory response syndrome after coronary artery bypass grafting,” Biological and Pharmaceutical Bulletin, vol. 30, no. 3, pp. 410–414, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Snell and B. Parizkova, “Organ damage during cardiopulmonary bypass,” in Cardiopulmonary Bypass, S. Ghosh, F. Falter, and D. J. Cook, Eds., pp. 140–153, Cambridge University Press, 2009. View at Google Scholar
  3. V. A. Chereshnev and E. Gusev Yu, “Immunological and Pathophysiological mechanisms of Systemic Inflammation,” Medical Immunology, vol. 14, no. 1-2, pp. 9–20, 2012. View at Google Scholar
  4. K. S. Midwood and A. M. Piccinini, “DAMPening inflammation by modulating TLR signalling,” Mediators of Inflammation, vol. 2010, Article ID 672395, 21 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Y. Chen and G. Nuñez, “Sterile inflammation: sensing and reacting to damage,” Nature Reviews Immunology, vol. 10, no. 12, pp. 826–837, 2010. View at Publisher · View at Google Scholar
  6. J. K. Chan, J. Roth, J. J. Oppenheim et al., “Alarmins: awaiting a clinical response,” Journal of Clinical Investigation, vol. 122, no. 8, pp. 2711–2719, 2012. View at Publisher · View at Google Scholar
  7. A. Asea, “Heat shock proteins and toll-like receptors,” Handbook of experimental pharmacology, no. 183, pp. 111–127, 2008. View at Google Scholar · View at Scopus
  8. S. P. Jong, F. Gamboni-Robertson, Q. He et al., “High mobility group box 1 protein interacts with multiple Toll-like receptors,” The American Journal of Physiology, vol. 290, no. 3, pp. C917–C924, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Liu-Bryan, K. Pritzker, G. S. Firestein, and R. Terkeltaub, “TLR2 signaling in chondrocytes drives calcium pyrophosphate dihydrate and monosodium urate crystal-induced nitric oxide generation,” Journal of Immunology, vol. 174, no. 8, pp. 5016–5023, 2005. View at Google Scholar · View at Scopus
  10. M. G. Netea, T. Azam, G. Ferwerda, S. E. Girardin, S. H. Kim, and C. A. Dinarello, “Triggering receptor expressed on myeloid cells-1 (TREM-1) amplifies the signals induced by the NACHT-LRR (NLR) pattern recognition receptors,” Journal of Leukocyte Biology, vol. 80, no. 6, pp. 1454–1461, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Bouchon, J. Dietrich, and M. Colonna, “Cutting edge: inflammatory responses can be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes,” Journal of Immunology, vol. 164, no. 10, pp. 4991–4995, 2000. View at Google Scholar · View at Scopus
  12. J. R. Bleharski, V. Kiessler, C. Buonsanti et al., “A role for triggering receptor expressed on myeloid cells-1 in host defense during the early-induced and adaptive phases of the immune response,” Journal of Immunology, vol. 170, no. 7, pp. 3812–3818, 2003. View at Google Scholar · View at Scopus
  13. M. P. Radsak, H. R. Salih, H.-G. Rammensee, and H. Schild, “Triggering receptor expressed on myeloid cells-1 in neutrophil inflammatory responses: differential regulation of activation and survival,” Journal of Immunology, vol. 172, no. 8, pp. 4956–4963, 2004. View at Google Scholar · View at Scopus
  14. K. Dower, D. K. Ellis, K. Saraf, S. A. Jelinsky, and L. L. Lin, “Innate immune responses to TREM-1 activation: overlap, divergence, and positive and negative cross-talk with bacterial lipopolysaccharide,” Journal of Immunology, vol. 180, no. 5, pp. 3520–3534, 2008. View at Google Scholar · View at Scopus
  15. I. Wong-Baeza, N. González-Roldán, E. Ferat-Osorio et al., “Triggering receptor expressed on myeloid cells (TREM-1) is regulated post-transcriptionally and its ligand is present in the sera of some septic patients,” Clinical and Experimental Immunology, vol. 145, no. 3, pp. 448–455, 2006. View at Google Scholar
  16. R. El Mezayen, M. El Gazzar, M. C. Seeds, C. E. McCall, S. C. Dreskin, and M. R. Nicolls, “Endogenous signals released from necrotic cells augment inflammatory responses to bacterial endotoxin,” Immunology Letters, vol. 111, no. 1, pp. 36–44, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. N. J. Busbridge and A. B. Grossman, “Stress and the single cytokine: interleukin modulation of the pituitary-adrenal axis,” Molecular and Cellular Endocrinology, vol. 82, no. 2-3, pp. c209–c214, 1991. View at Google Scholar · View at Scopus
  18. T. Tallone, G. Turconi, G. Soldati, G. Pedrazzini, T. Moccetti, and G. Vassalli, “Heterogeneity of human monocytes: an optimized four-color flow cytometry protocol for analysis of monocyte subsets,” Journal of Cardiovascular Translational Research, vol. 4, no. 2, pp. 211–219, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Merino, P. Buendia, A. Martin-Malo, P. Aljama, R. Ramirez, and J. Carracedo, “Senescent CD14+CD16+ monocytes exhibit proinflammatory and proatherosclerotic activity,” Journal of Immunology, vol. 186, no. 3, pp. 1809–1815, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Ziegler-Heitbrock, “The CD14+CD16+ blood monocytes: their role in infection and inflammation,” Journal of Leukocyte Biology, vol. 81, no. 3, pp. 584–592, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Cros, N. Cagnard, K. Woollard et al., “Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors,” Immunity, vol. 33, no. 3, pp. 375–386, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Andreesen, W. Brugger, C. Scheibenbogen et al., “Surface phenotype analysis of human monocyte to macrophage maturation,” Journal of Leukocyte Biology, vol. 47, no. 6, pp. 490–497, 1990. View at Google Scholar · View at Scopus
  23. B. Steppich, F. Dayyani, R. Gruber, R. Lorenz, M. Mack, and H. W. L. Ziegler-Heitbrock, “Selective mobilization of CD14+ CD16+ monocytes by exercise,” The American Journal of Physiology, vol. 279, no. 3, pp. C578–C586, 2000. View at Google Scholar · View at Scopus
  24. M. Nahrendorf, F. K. Swirski, E. Aikawa et al., “The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions,” Journal of Experimental Medicine, vol. 204, no. 12, pp. 3037–3047, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Sakata, J. W. Dong, J. G. Vallejo et al., “Toll-like receptor 2 modulates left ventricular function following ischemia-reperfusion injury,” The American Journal of Physiology, vol. 292, no. 1, pp. H503–H509, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Favre, P. Musette, V. Douin-Echinard et al., “Toll-like receptors 2-deficient mice are protected against postischemic coronary endothelial dysfunction,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 5, pp. 1064–1071, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. F. Arslan, M. B. Smeets, L. A. J. O'Neill et al., “Myocardial ischemia/reperfusion injury is mediated by leukocytic toll-like receptor-2 and reduced by systemic administration of a novel anti-toll-like receptor-2 antibody,” Circulation, vol. 121, no. 1, pp. 80–90, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. N. A. Skinner, C. M. MacIsaac, J. A. Hamilton, and K. Visvanathan, “Regulation of Toll-like receptor (TLR)2 and TLR4 on CD14 dimCD16+ monocytes in response to sepsis-related antigens,” Clinical and Experimental Immunology, vol. 141, no. 2, pp. 270–278, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. T. H. Flo, O. Halaas, S. Torp et al., “Differential expression of Toll-like receptor 2 in human cells,” Journal of Leukocyte Biology, vol. 69, no. 3, pp. 474–481, 2001. View at Google Scholar · View at Scopus
  30. M. Trianiafilou, M. Manukyan, A. Mackie et al., “Lipoteichoic acid and Toll-like receptor 2 internalization and targeting to the Golgi are lipid raft-dependent,” Journal of Biological Chemistry, vol. 279, no. 39, pp. 40882–40889, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. E. Latz, A. Visintin, E. Lien et al., “Lipopolysaccharide rapidly traffics to and from the golgi apparatus with the toll-like receptor 4-MD-2-CD14 complex in a process that is distinct from the initiation of signal transduction,” Journal of Biological Chemistry, vol. 277, no. 49, pp. 47834–47843, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Husebye, Ø. Halaas, H. Stenmark et al., “Endocytic pathways regulate Toll-like receptor 4 signaling and link innate and adaptive immunity,” EMBO Journal, vol. 25, no. 4, pp. 683–692, 2006. View at Publisher · View at Google Scholar · View at Scopus