Table of Contents
ISRN Physiology
Volume 2013 (2013), Article ID 837630, 15 pages
http://dx.doi.org/10.1155/2013/837630
Review Article

Physiology and Pathophysiology of the Biliary Tract: The Gallbladder and Sphincter of Oddi—A Review

Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA

Received 23 December 2012; Accepted 9 January 2013

Academic Editors: S. Gupte, D. Xiao, and A. V. Zholos

Copyright © 2013 Jose Behar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. J. Dodds, W. J. Hogan, and J. E. Geenen, “Motility of the biliary system,” in Handbook of Physiology: Gastrointestinal System. Volume Motility and Circulation, J. Wood and S. Schultz, Eds., chapter 28, pp. 1055–1101, Oxford University Press, New York, NY, USA, 1989. View at Google Scholar
  2. R. D. Odze and J. R. Goldblum, Eds., Surgical Pathology of the GI Tract, Liver, Biliary Tract and Pancreas, chapter 29, part 2, Saunders, Philadelphia, Pa, USA, 2009.
  3. J. Svanvik, C. A. Pellegrini, B. Allen, R. Bernhoft, and L. W. Way, “Transport of fluid and biliary lipids in the canine gallbladder in experimental cholecystitis,” Journal of Surgical Research, vol. 41, no. 4, pp. 425–431, 1986. View at Google Scholar · View at Scopus
  4. S. G. Corradini, W. Elisei, L. Giovannelli et al., “Impaired human gallbladder lipid absorption in cholesterol gallstone disease and its effect on cholesterol solubility in bile,” Gastroenterology, vol. 118, no. 5, pp. 912–920, 2000. View at Google Scholar · View at Scopus
  5. J. Behar and P. Biancani, “Motility of the biliary system,” in Handbook of Physiology: Gastrointestinal System. Volume Motility and Circulation, J. Wood and S. Schultz, Eds., chapter 29, pp. 1055–1101, Oxford University Press, New York, NY, USA, 1989. View at Google Scholar
  6. K. Sonobe, T. Sakai, M. Sato, N. Haga, and Z. Itoh, “Control of gallbladder contractions by cholecystokinin through cholecystokinin-A receptors in the vagal pathway and gallbladder in the dog,” Regulatory Peptides, vol. 60, no. 1, pp. 33–46, 1995. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Cicala, E. Corazziari, D. Diacinti, D. Badiali, and A. Torsoli, “Effect of endogenous cholecystokinin on postprandial gallbladder refilling: ultrasonographic study in healthy subjects and in gallstone patients,” Digestive Diseases and Sciences, vol. 40, no. 1, pp. 76–81, 1995. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Shiratori, S. Watanabe, W. Y. Chey, K. Y. Lee, and T. M. Chang, “Endogenous cholecystokinin drives gallbladder emptying in dogs,” American Journal of Physiology, vol. 251, no. 4, pp. G553–G558, 1986. View at Google Scholar · View at Scopus
  9. D. F. Magee, S. Naruse, and A. Pap, “Vagal control of gall-bladder contraction,” Journal of Physiology, vol. 355, pp. 65–70, 1984. View at Google Scholar · View at Scopus
  10. M. Khoursheed, D. Krajci, M. A. Oriowo, E. Kadavil, E. K. Philip, and O. Thulesius, “Neurogenic control of the ovine gallbladder: ultrastructural and functional study,” Digestion, vol. 59, no. 4, pp. 335–342, 1998. View at Publisher · View at Google Scholar · View at Scopus
  11. Q. Chen, K. Lee, Z. Xiao, P. Biancani, and J. Behar, “Mechanism of gallbladder relaxation in the cat: role of norepinephrine,” Journal of Pharmacology and Experimental Therapeutics, vol. 285, no. 2, pp. 475–479, 1998. View at Google Scholar · View at Scopus
  12. C. Dahlstrand, A. Dahlström, and H. Ahlman, “Adrenergic and VIP-ergic relaxatory mechanisms of the feline extrahepatic biliary tree,” Journal of the Autonomic Nervous System, vol. 26, no. 2, pp. 97–106, 1989. View at Google Scholar · View at Scopus
  13. H. Abiru, S. K. Sarna, and R. E. Condon, “Contractile mechanisms of gallbladder filling and emptying in dogs,” Gastroenterology, vol. 106, no. 6, pp. 1652–1661, 1994. View at Google Scholar · View at Scopus
  14. L. Behar, K. Y. Lee, W. R. Thompson, and P. Biancani, “Gallbladder contraction in patients with pigment and cholesterol stones,” Gastroenterology, vol. 97, no. 6, pp. 1479–1484, 1989. View at Google Scholar · View at Scopus
  15. A. Torsoli, E. Corazziari, F. I. Habib, and M. Cicala, “Pressure relationships within the human bile tract. Normal and abnormal physiology,” Scandinavian Journal of Gastroenterology, Supplement, vol. 25, no. 175, pp. 52–57, 1990. View at Google Scholar · View at Scopus
  16. I. Takahashi, M. K. Kern, W. J. Dodds et al., “Contraction pattern of opossum gallbladder during fasting and after feeding,” American Journal of Physiology, vol. 250, no. 2, pp. G227–G235, 1986. View at Google Scholar · View at Scopus
  17. P. G. Burhol, P. L. Rayford, R. Jorde, H. L. Waldum, T. B. Schulz, and J. C. Thompson, “Radioimmunoassay of plasma cholecystokinin (CCK), duodenal release of CCK, diurnal variation of plasma CCK, and immunoreactive plasma CCK components in man,” Hepato-Gastroenterology, vol. 27, no. 4, pp. 300–309, 1980. View at Google Scholar · View at Scopus
  18. T. O. Lankisch, Y. Tsunoda, Y. Lu, and C. Owyang, “Characterization of CCKA receptor affinity states and Ca2+ signal transduction in vagal nodose ganglia,” American Journal of Physiology, vol. 282, no. 6, pp. G1002–G1008, 2002. View at Google Scholar · View at Scopus
  19. L. Gullo, L. Bolondi, P. Priori, P. Casanova, and G. Labò, “Inhibitory effect of atropine on cholecystokinin-induced gallbladder contraction in man,” Digestion, vol. 29, no. 4, pp. 209–213, 1984. View at Google Scholar · View at Scopus
  20. E. A. Boyden, “The anatomy of the choledochoduodenal junction in man,” Surgery, Gynecology & Obstetrics, vol. 104, no. 6, pp. 641–652, 1957. View at Google Scholar · View at Scopus
  21. J. Behar and P. Biancani, “Role of cat sphincter of Oddi motor activity on trans-sphincteric flow (TSF),” Gastroenterology, vol. 88, p. 1320, 1985. View at Google Scholar
  22. R. Honda, J. Toouli, W. J. Dodds, S. Sarna, and W. J. Hogan, “Relationship of sphincter of Oddi spike bursts to gastrointestinal myoelectric activity in conscious opossums,” Journal of Clinical Investigation, vol. 69, no. 4, pp. 770–778, 1982. View at Google Scholar · View at Scopus
  23. N. Hanyu, W. J. Dodds, R. D. Layman, and W. J. Hogan, “Cholecystokinin-induced contraction of opossum sphincter of Oddi. Mechanism of action,” Digestive Diseases and Sciences, vol. 35, no. 5, pp. 567–576, 1990. View at Publisher · View at Google Scholar · View at Scopus
  24. J. E. Geenen, W. J. Hogan, E. T. Stewart, W. J. Dodds, and R. C. Arndorffer, “ERCP manometry of the sphincter of Oddi,” in The Papilla Vater and Its Diseases, M. Classen, J. E. Geenen, and K. Kawai, Eds., pp. 92–98, Witzstrock, Köln, Germany, 1979. View at Google Scholar
  25. J. Toouli and A. Craig, “Sphincter of Oddi function and dysfunction,” Canadian Journal of Gastroenterology, vol. 14, no. 5, pp. 411–419, 2000. View at Google Scholar · View at Scopus
  26. K. Ono, H. Suzuki, R. Hada, M. Sasaki, and M. Endoh, “Gastrointestinal hormones and motility of the human sphincter of Oddi,” Nihon Heikatsukin Gakkai Zasshi, vol. 21, supplement, pp. 69–75, 1985. View at Google Scholar · View at Scopus
  27. T. L. Peeters, G. Vantrappen, and J. Janssens, “Bile acid output and the interdigestive migrating motor complex in normals and in cholecystectomy patients,” Gastroenterology, vol. 79, no. 4, pp. 678–681, 1980. View at Google Scholar · View at Scopus
  28. J. Behar and P. Biancani, “Effect of cholecystokinin and the octapeptide of cholecystokinin on the feline sphincter of Oddi and gallbladder. Mechanism of action,” Journal of Clinical Investigation, vol. 66, no. 6, pp. 1231–1239, 1980. View at Google Scholar · View at Scopus
  29. J. Behar and P. Biancani, “Pharmacology of the biliary tract,” in Handbook of Physiology. The Gastrointestinal System I, S. Schultz, Ed., chapter 29, pp. 1103–1131, 1989. View at Google Scholar
  30. J. F. Helm, W. J. Dodds, J. Christensen, and S. K. Sarna, “Control mechanism of spontaneous in vitro contractions of the opossum sphincter of Oddi,” The American Journal of Physiology, vol. 249, no. 5, pp. G572–G579, 1985. View at Google Scholar · View at Scopus
  31. V. Garrigues, J. Ponce, V. Pertejo, T. Sala, and J. Berenguer, “Effects of atropine and pirenzepine on sphincter of Oddi motility. A manometric study,” Journal of Hepatology, vol. 3, no. 2, pp. 247–250, 1986. View at Google Scholar · View at Scopus
  32. J. Behar and P. Biancani, “Neural control of the sphincter of Oddi. Physiologic role of enkephalins on the regulation of basal sphincter of Oddi motor activity in the cat,” Gastroenterology, vol. 86, no. 1, pp. 134–141, 1984. View at Google Scholar · View at Scopus
  33. J. Behar and P. Biancani, “Neural control of the sphincter of Oddi: a physiological role of 5-hydroxytryptamine in the regulation of basal sphincter of oddi motor activity in the cat,” Journal of Clinical Investigation, vol. 72, no. 2, pp. 551–559, 1983. View at Google Scholar · View at Scopus
  34. J. Behar and P. Biancani, “Effects of mechanisms of action of motilin on the cat sphincter of Oddi,” Gastroenterology, vol. 95, no. 4, pp. 1099–1105, 1988. View at Google Scholar · View at Scopus
  35. J. W. Wiley, T. M. O'Dorisio, and C. Owyang, “Vasoactive intestinal polypeptide mediates cholecystokinin-induced relaxation of the sphincter of Oddi,” Journal of Clinical Investigation, vol. 81, no. 6, pp. 1920–1924, 1988. View at Google Scholar · View at Scopus
  36. H. S. Kaufman, M. A. Shermak, C. A. May, H. A. Pitt, and K. D. Lillemoe, “Nitric oxide inhibits resting sphincter of Oddi activity,” The American Journal of Surgery, vol. 165, no. 1, pp. 74–80, 1993. View at Publisher · View at Google Scholar
  37. I. Yamamoto, M. Fujimura, N. Kihara et al., “Nitric oxide formation in the dog sphincter of Oddi from nitric oxide donors as measured with in vivo micro-dialysis,” Alimentary Pharmacology and Therapeutics, vol. 14, no. 8, pp. 1095–1101, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. K. Yokohata, H. Kimura, Y. Ogawa, G. Naritomi, and M. Tanaka, “Biliary motility. Changes in detailed characteristics correlated to duodenal migrating motor complex and effects of morphine and motilin in dogs,” Digestive Diseases and Sciences, vol. 39, no. 6, pp. 1294–1301, 1994. View at Publisher · View at Google Scholar · View at Scopus
  39. Y. Tanobe, T. Okamura, M. Fujimura, and N. Toda, “Functional role and histological demonstration of nitric-oxide-mediated inhibitory nerves in dog sphincter of Oddi,” Neurogastroenterology and Motility, vol. 7, no. 4, pp. 219–227, 1995. View at Google Scholar · View at Scopus
  40. S. Mahmud, Y. Hamza, and A. H. M. Nassar, “The significance of cystic duct stones encountered during laparoscopic cholecystectomy,” Surgical Endoscopy, vol. 15, no. 5, pp. 460–462, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. P. Paré, E. A. Shaffer, and L. Rosenthall, “Nonvisualization of the gallbladder by 99m Tc-HIDA cholescintigraphy as evidence of cholecystitis,” Canadian Medical Association Journal, vol. 118, no. 4, pp. 384–386, 1978. View at Google Scholar · View at Scopus
  42. Z. L. Xiao, Q. Chen, J. Amaral, P. Biancani, and J. Behar, “Defect of receptor-G protein coupling in human gallbladder with cholesterol stones,” American Journal of Physiology, vol. 278, no. 2, pp. G251–G258, 2000. View at Google Scholar · View at Scopus
  43. A. Csendes, P. Burdiles, G. Smok, P. Csendes, A. Burgos, and M. Recio, “Histologic findings of gallbladder mucosa in 87 patients with morbid obesity without gallstones compared to 87 control subjects,” Journal of Gastrointestinal Surgery, vol. 7, no. 4, pp. 547–551, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. P. L. Liew, W. Wang, Y. C. Lee, M. T. Huang, Y. C. Lin, and W. J. Lee, “Gallbladder disease among obese patients in Taiwan,” Obesity Surgery, vol. 17, no. 3, pp. 383–390, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. M. P. L. Guarino, Z. L. Xiao, P. Biancani, and J. Behar, “PAF-like lipids- and PAF-induced gallbladder muscle contraction is mediated by different pathways in guinea pigs,” American Journal of Physiology, vol. 285, no. 6, pp. G1189–G1197, 2003. View at Google Scholar · View at Scopus
  46. S. J. Baig, S. Biswas, S. Das, K. Basu, and G. Chattopadhyay, “Histopathological changes in gallbladder mucosa in cholelithiasis: correlation with chemical composition of gallstones,” Tropical Gastroenterology, vol. 23, no. 1, pp. 25–27, 2002. View at Google Scholar · View at Scopus
  47. S. Carotti, M. P. L. Guarino, M. Cicala et al., “Effect of ursodeoxycholic acid on inflammatory infiltrate in gallbladder muscle of cholesterol gallstone patients,” Neurogastroenterology and Motility, vol. 22, no. 8, pp. 866–873, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. P. Portincasa, A. Di Ciaula, G. Vendemiale et al., “Gallbladder motility and cholesterol crystallization in bile from patients with pigment and cholesterol gallstones,” European Journal of Clinical Investigation, vol. 30, no. 4, pp. 317–324, 2000. View at Publisher · View at Google Scholar · View at Scopus
  49. J. J. Roslyn, L. DenBesten, J. E. Thompson, and B. F. Silverman, “Roles of lithogenic bile and cystic duct occlusion in the pathogenesis of acute cholecystitis,” American Journal of Surgery, vol. 140, no. 1, pp. 126–130, 1980. View at Google Scholar · View at Scopus
  50. K. J. van Erpecum, D. Q. H. Wang, A. Moschetta et al., “Gallbladder histopathology during murine gallstone formation: relation to motility and concentrating function,” Journal of Lipid Research, vol. 47, no. 1, pp. 32–41, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. S. P. Lee and A. J. Scott, “Dihydrocholesterol-induced gallstones in the rabbit: evidence that bile acids cause gallbladder epithelial injury,” British Journal of Experimental Pathology, vol. 60, no. 3, pp. 231–238, 1979. View at Google Scholar · View at Scopus
  52. A. J. Scott, “Epithelial cell proliferation in diverse models of experimental cholelithiasis,” Gut, vol. 19, no. 6, pp. 558–562, 1978. View at Google Scholar · View at Scopus
  53. M. R. Jacyna, P. E. Ross, M. A. Bakar, D. Hopwood, and I. A. Bouchier, “Characteristics of cholesterol absorption by human gall bladder: relevance to cholesterolosis,” Journal of Clinical Pathology, vol. 40, no. 5, pp. 524–529, 1987. View at Google Scholar · View at Scopus
  54. W. W. LaMorte, M. L. Booker, T. E. Scott, and L. F. Williams Jr., “Increases in gallbladder prostaglandin synthesis before the formation of cholesterol gallstones,” Surgery, vol. 98, no. 3, pp. 445–451, 1985. View at Google Scholar · View at Scopus
  55. L. Jivegård, G. Rådberg, and T. Wahlin, “An experimental study on the role of gallbladder mucosal fluid secretion and intraluminal pressure in cholecystitis,” Acta Chirurgica Scandinavica, vol. 152, pp. 605–610, 1986. View at Google Scholar
  56. R. Kuver, C. Savard, D. Oda, and S. P. Lee, “PGE generates intracellular cAMP and accelerates mucin secretion by cultured dog gallbladder epithelial cells,” American Journal of Physiology, vol. 267, no. 6, pp. G998–G1003, 1994. View at Google Scholar · View at Scopus
  57. J. Lamote and G. Willems, “DNA synthesis, cell proliferation index in normal and abnormal gallbladder epithelium,” Microscopy Research and Technique, vol. 38, no. 6, pp. 609–615, 1997. View at Publisher · View at Google Scholar
  58. B. R. MacPherson, R. S. Pemsingh, and G. W. Scott, “Experimental cholelithiasis in the ground squirrel,” Laboratory Investigation, vol. 56, no. 2, pp. 138–145, 1987. View at Google Scholar · View at Scopus
  59. P. Yu, Q. Chen, P. Biancani, and J. Behar, “Membrane cholesterol alters gallbladder muscle contractility in prairie dogs,” American Journal of Physiology, vol. 271, no. 1, pp. G62–G67, 1996. View at Google Scholar · View at Scopus
  60. Z. Xiao, F. Schmitz, V. E. Pricolo, P. Biancani, and J. Behar, “Role of caveolae in the pathogenesis of cholesterol-induced gallbladder muscle hypomotility,” American Journal of Physiology, vol. 292, no. 6, pp. G1641–G1649, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. P. G. Frank, S. Pavlides, M. W. C. Cheung, K. Daumer, and M. P. Lisanti, “Role of caveolin-1 in the regulation of lipoprotein metabolism,” American Journal of Physiology, vol. 295, no. 1, pp. C242–C248, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. P. Cong, V. Pricolo, P. Biancani, and J. Behar, “Effects of cholesterol on CCK-1 receptors and caveolin-3 proteins recycling in human gallbladder muscle,” American Journal of Physiology, vol. 299, no. 3, pp. G742–G750, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. Z. L. Xiao, Q. Chen, J. Amaral, P. Biancani, R. T. Jensen, and J. Behar, “CCK receptor dysfunction in muscle membranes from human gallbladders with cholesterol stones,” American Journal of Physiology, vol. 276, no. 6, pp. G1401–G1407, 1999. View at Google Scholar · View at Scopus
  64. J. Behar, B. Y. Rhim, W. Thompson, and P. Biancani, “Inositol trisphosphate restores impaired human gallbladder motility associated with cholesterol stones,” Gastroenterology, vol. 104, no. 2, pp. 563–568, 1993. View at Google Scholar · View at Scopus
  65. Q. Chen, J. Amaral, S. Oh, P. Biancani, and J. Behar, “Gallbladder relaxation in patients with pigment and cholesterol stones,” Gastroenterology, vol. 113, no. 3, pp. 930–937, 1997. View at Publisher · View at Google Scholar · View at Scopus
  66. L. Zhang, A. D. Bonev, M. T. Nelson, and G. M. Mawe, “Ionic basis of the action potential of guinea pig gallbladder smooth muscle cells,” American Journal of Physiology, vol. 265, no. 6, pp. C1552–C1561, 1993. View at Google Scholar · View at Scopus
  67. L. J. Jennings, Q. W. Xu, T. A. Firth, M. T. Nelson, and G. M. Mawe, “Cholesterol inhibits spontaneous action potentials and calcium currents in guinea pig gallbladder smooth muscle,” American Journal of Physiology, vol. 277, no. 5, pp. G1017–G1026, 1999. View at Google Scholar · View at Scopus
  68. S. Morales, P. J. Camello, G. M. Mawe, and M. J. Pozo, “Characterization of intracellular Ca2+ stores in gallbladder smooth muscle,” American Journal of Physiology, vol. 288, no. 3, pp. G507–G513, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. M. Xie, V. R. Kotecha, J. D. Andrade, J. G. Fox, and M. C. Carey, “Augmented cholesterol absorption and sarcolemmal sterol enrichment slow small intestinal transit in mice, contributing to cholesterol cholelithogenesis,” The Journal of Physiology, vol. 590, pp. 1811–1824, 2012. View at Publisher · View at Google Scholar
  70. B. Lavoie, B. Nausch, E. A. Zane et al., “Disruption of gallbladder smooth muscle function is an early feature in the development of cholesterol gallstone disease,” Neurogastroenterology & Motility, vol. 24, no. 7, pp. e313–e324, 2012. View at Publisher · View at Google Scholar
  71. S. I. Myers, D. Haley-Russell, L. Parks, and K. Husband, “Common bile duct ligation in rabbit: a new model of acute cholecystitis description of histology and bile analysis,” Journal of Surgical Research, vol. 45, no. 6, pp. 556–564, 1988. View at Google Scholar · View at Scopus
  72. Z. L. Xiao, P. Biancani, M. C. Carey, and J. Behar, “Hydrophilic but not hydrophobic bile acids prevent gallbladder muscle dysfunction in acute cholecystitis,” Hepatology, vol. 37, no. 6, pp. 1442–1450, 2003. View at Publisher · View at Google Scholar · View at Scopus
  73. C. Jüngst, N. Sreejayan, B. Zündt et al., “Ursodeoxycholic acid reduces lipid peroxidation and mucin secretagogue activity in gallbladder bile of patients with cholesterol gallstones,” European Journal of Clinical Investigation, vol. 38, no. 9, pp. 634–639, 2008. View at Publisher · View at Google Scholar
  74. Z. L. Xiao, A. K. Rho, P. Biancani, and J. Behar, “Effects of bile acids on the muscle functions of guinea pig gallbladder,” American Journal of Physiology, vol. 283, no. 1, pp. G87–G94, 2002. View at Google Scholar · View at Scopus
  75. B. Lavoie, O. B. Balemba, C. Godfrey et al., “Hydrophobic bile salts inhibit gallbladder smooth muscle function via stimulation of GPBAR1 receptors and activation of KATP channels,” Journal of Physiology, vol. 588, no. 17, pp. 3295–3305, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. M. P. L. Guarino, S. Carotti, S. Morini et al., “Decreased number of activated macrophages in gallbladder muscle layer of cholesterol gallstone patients following ursodeoxycholic acid,” Gut, vol. 57, no. 12, pp. 1740–1741, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. S. Tomida, M. Abei, T. Yamaguchi et al., “Long-term ursodeoxycholic acid therapy is associated with reduced risk of biliary pain and acute cholecystitis in patients with gallbladder stones: a cohort analysis,” Hepatology, vol. 30, no. 1, pp. 6–13, 1999. View at Publisher · View at Google Scholar · View at Scopus
  78. D. Q. H. Wang, S. Tazuma, D. E. Cohen, and M. C. Carey, “Feeding natural hydrophilic bile acids inhibits intestinal cholesterol absorption: studies in the gallstone-susceptible mouse,” American Journal of Physiology, vol. 285, no. 3, pp. G494–G502, 2003. View at Google Scholar · View at Scopus
  79. Z. L. Xiao, P. Biancani, and J. Behar, “Role of PGE2 on gallbladder muscle cytoprotection of guinea pigs,” American Journal of Physiology, vol. 286, no. 1, pp. G82–G88, 2004. View at Google Scholar · View at Scopus
  80. Z. L. Xiao, J. Amaral, P. Biancani, and J. Behar, “Impaired cytoprotective function of muscle in human gallbladders with cholesterol stones,” American Journal of Physiology, vol. 288, no. 3, pp. G525–G532, 2005. View at Publisher · View at Google Scholar · View at Scopus
  81. Q. Chen, V. Chitinavis, Z. Xiao et al., “Impaired G protein function in gallbladder muscle from progesterone- treated guinea pigs,” American Journal of Physiology, vol. 274, no. 2, pp. G283–G289, 1998. View at Google Scholar · View at Scopus
  82. P. Cong, V. Pricolo, P. Biancani, and J. Behar, “High levels of caveolar cholesterol inhibit progesterone-induced genomic actions in human and guinea pig gallbladder muscle,” American Journal of Physiology, vol. 296, no. 4, pp. G948–G954, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. H. H. Wang, N. H. Afdhal, and D. Q. H. Wang, “Estrogen receptor α, but not β, plays a major role in 17β-estradiol-induced murine cholesterol gallstones,” Gastroenterology, vol. 127, no. 1, pp. 239–249, 2004. View at Publisher · View at Google Scholar · View at Scopus
  84. A. Moschetta, M. F. J. Stolk, J. F. Rehfeld et al., “Severe impairment of postprandial cholecystokinin release and gall-bladder emptying and high risk of gallstone formation in acromegalic patients during Sandostatin LAR,” Alimentary Pharmacology and Therapeutics, vol. 15, no. 2, pp. 181–185, 2001. View at Publisher · View at Google Scholar · View at Scopus
  85. H. H. Wang, P. Portincasa, M. Liu, P. Tso, L. C. Samuelson, and D. Q. H. Wang, “Effect of gallbladder hypomotility on cholesterol crystallization and growth in CCK-deficient mice,” Biochimica et Biophysica Acta, vol. 1801, no. 2, pp. 138–146, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. R. H. Dowling, “Review: pathogenesis of gallstones,” Alimentary Pharmacology and Therapeutics, vol. 14, supplement 2, pp. 39–47, 2000. View at Google Scholar · View at Scopus
  87. J. S. Dooley, S. F. Anna, K. Lock, E. Burroughs, and J. Heathcote, Gallstones and Benign Biliary Disease, chapter 12, Blackwell, 2011.
  88. S. M. Strasberg and P.-A. Clavien, “Acute calculous cholecystitis,” in Gastroenterology, W. S. Haubrich, F. Schaffner, and J. E. Berk, Eds., vol. 3, chapter 137, pp. 2635–2664, Saunders, Philadelphia, Pa, USA, 5th edition, 1995. View at Google Scholar
  89. D. Festi, M. L. B. Reggiani, A. F. Attili et al., “Natural history of gallstone disease: expectant management or active treatment? Results from a population-based cohort study,” Journal of Gastroenterology and Hepatology, vol. 25, no. 4, pp. 719–724, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. L. J. Bennion, W. C. Knowler, D. M. Mott, A. M. Spagnola, and P. H. Bennett, “Development of lithogenic bile during puberty in Pima Indians,” The New England Journal of Medicine, vol. 300, no. 16, pp. 873–876, 1979. View at Google Scholar · View at Scopus
  91. R. E. Sampliner, P. H. Bennett, L. J. Comess, F. A. Rose, and T. A. Burch, “Gallbladder disease in pima indians. Demonstration of high prevalence and early onset by cholecystography,” The New England Journal of Medicine, vol. 283, no. 25, pp. 1358–1364, 1970. View at Google Scholar · View at Scopus
  92. J. F. Miquel, C. Covarrubias, L. Villaroel et al., “Genetic epidemiology of cholesterol cholelithiasis among Chilean Hispanics, Amerindians, and Maoris,” Gastroenterology, vol. 115, no. 4, pp. 937–946, 1998. View at Publisher · View at Google Scholar · View at Scopus
  93. A. Martínez, X. Bona, M. Velasco, and J. Martín, “Diagnostic accuracy of ultrasound in acute cholecystitis,” Gastrointestinal Radiology, vol. 11, no. 4, pp. 334–338, 1986. View at Google Scholar · View at Scopus
  94. K. J. Mortelé and P. R. Ros, “Anatomic variants of the biliary tree: MR cholangiographic findings and clinical applications,” American Journal of Roentgenology, vol. 177, no. 2, pp. 389–394, 2001. View at Google Scholar · View at Scopus
  95. P. E. Jaffe, “Gallstones: who are good candidates for nonsurgical treatment?” Postgraduate Medicine, vol. 94, no. 6, pp. 45–57, 1993. View at Google Scholar · View at Scopus
  96. M. C. Weinstein, C. M. Coley, and J. M. Richter, “Medical management of gallstones: a cost—effectiveness analysis,” Journal of General Internal Medicine, vol. 5, no. 4, pp. 277–284, 1990. View at Google Scholar · View at Scopus
  97. J. Velasco, J. Singh, P. Ramanujam, and M. Friedberg, “Hepatobiliary scanning in cholecystitis,” European Journal of Nuclear Medicine, vol. 7, no. 1, pp. 11–13, 1982. View at Google Scholar · View at Scopus
  98. A. van Randen, W. Laméris, H. W. van Es et al., “A comparison of the accuracy of ultrasound and computed tomography in common diagnoses causing acute abdominal pain,” European Radiology, vol. 21, no. 7, pp. 1535–1545, 2011. View at Publisher · View at Google Scholar · View at Scopus
  99. W. F. Fallon Jr., J. S. Newman, G. L. Fallon, and M. A. Malangoni, “The surgical management of intra-abdominal inflammatory conditions during pregnancy,” Surgical Clinics of North America, vol. 75, no. 1, pp. 15–31, 1995. View at Google Scholar · View at Scopus
  100. J. M. Wu, Y. M. Wu, C. Y. Lee, H. P. Wang, and M. T. Lin, “Is early laparoscopic cholecystectomy a safe procedure in patients when the duration of acute cholecystitis is more than three days?” Hepatogastroenterology, vol. 59, pp. 10–12, 2012. View at Google Scholar
  101. J. Behar, E. Corazziari, M. Guelrud, W. Hogan, S. Sherman, and J. Toouli, “Functional gallbladder and sphincter of oddi disorders,” Gastroenterology, vol. 130, no. 5, pp. 1498–1509, 2006. View at Publisher · View at Google Scholar · View at Scopus
  102. M. Cicala, F. I. Habib, P. Vavassori et al., “Outcome of endoscopic sphincterotomy in post cholecystectomy patients with sphincter of Oddi dysfunction as predicted by manometry and quantitative choledochoscintigraphy,” Gut, vol. 50, no. 5, pp. 665–668, 2002. View at Publisher · View at Google Scholar · View at Scopus
  103. J. E. Geenen, W. J. Hogan, W. J. Dodds, J. Toouli, and R. P. Venu, “The efficacy of endoscopic sphingerotomy after cholecystectomy in patients with sphincter-of-Oddi dysfunction,” The New England Journal of Medicine, vol. 320, no. 2, pp. 82–87, 1989. View at Google Scholar · View at Scopus
  104. H. Meshkinpour, L. Kay, and M. Mollot, “The role of the flow rate of the pneumohydraulic system on post-sphincter of oddi manometry pancreatitis,” Journal of Clinical Gastroenterology, vol. 14, no. 3, pp. 236–239, 1992. View at Google Scholar · View at Scopus
  105. W. Hogan, J. Geenen, W. Dodds, J. Touli, R. Venu, and J. Helm, “Paradoxical motor response to cholecystokinin (CCK-OP) in patients with suspected sphincter of Oddi dysfunction,” Gastroenterology, vol. 82, no. 5, p. 1085, 1982. View at Google Scholar · View at Scopus
  106. T. Wehrmann, H. Seifert, M. Seipp, B. Lembcke, and W. F. Caspary, “Endoscopic injection of botulinum toxin for biliary sphincter of oddi dysfunction,” Endoscopy, vol. 30, no. 8, pp. 702–707, 1998. View at Google Scholar · View at Scopus
  107. L. Xiao, J. Cheng, J. Dai, and D. Zhang, “Botulinum toxin decreases hyperalgesia and inhibits P2X3 receptor over-expression in sensory neurons induced by ventral root transection in rats,” Pain Medicine, vol. 12, no. 9, pp. 1385–1394, 2011. View at Publisher · View at Google Scholar