Table of Contents
ISRN Applied Mathematics
Volume 2013 (2013), Article ID 849231, 38 pages
Review Article

Computational Methods for Fracture in Brittle and Quasi-Brittle Solids: State-of-the-Art Review and Future Perspectives

Institute of Structural Mechanics, Bauhaus-Universitat Weimar, Marienstraße 15, 99423 Weimar, Germany

Received 1 August 2012; Accepted 3 September 2012

Academic Editors: S. Li and R. Samtaney

Copyright © 2013 Timon Rabczuk. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


An overview of computational methods to model fracture in brittle and quasi-brittle materials is given. The overview focuses on continuum models for fracture. First, numerical difficulties related to modelling fracture for quasi-brittle materials will be discussed. Different techniques to eliminate or circumvent those difficulties will be described subsequently. In that context, regularization techniques such as nonlocal models, gradient enhanced models, viscous models, cohesive zone models, and smeared crack models will be discussed. The main focus of this paper will be on computational methods for discrete fracture (discrete cracks). Element erosion technques, inter-element separation methods, the embedded finite element method (EFEM), the extended finite element method (XFEM), meshfree methods (MMs), boundary elements (BEMs), isogeometric analysis, and the variational approach to fracture will be reviewed elucidating advantages and drawbacks of each approach. As tracking the crack path is of major concern in computational methods that preserve crack path continuity, one section will discuss different crack tracking techniques. Finally, cracking criteria will be reviewed before the paper ends with future research perspectives.