Table of Contents
ISRN Computational Biology
Volume 2013, Article ID 850179, 6 pages
Research Article

A Whole Genome Pairwise Comparative and Functional Analysis of Geobacter sulfurreducens PCA

Bioinformatics Lab, AU-KBC Research Centre, M.I.T Campus of Anna University, Chromepet, Chennai, Tamil Nadu 600044, India

Received 16 May 2013; Accepted 25 June 2013

Academic Editors: F. Barbault, S. Chavali, G. Colonna, and W. B. Fischer

Copyright © 2013 Ashok Selvaraj et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Geobacter species are involved in electricity production, bioremediations, and various environmental friendly activities. Whole genome comparative analyses of Geobacter sulfurreducens PCA, Geobacter bemidjiensis Bem, Geobacter sp. FRC-32, Geobacter lovleyi SZ, Geobacter sp. M21, Geobacter metallireducens GS-15, Geobacter uraniireducens Rf4 have been made to find out similarities and dissimilarities among them. For whole genome comparison of Geobacter species, an in-house tool, Geobacter Comparative Genomics Tool (GCGT) has been developed using BLASTALL program, and these whole genome analyses yielded conserved genes and they are used for functional prediction. The conserved genes identified are about 2184 genes, and these genes are classified into 14 groups based on the pathway information. Functions for 74 hypothetical proteins have been predicted based on the conserved genes. The predicted functions include pilus type proteins, flagellar proteins, ABC transporters, and other proteins which are involved in electron transfer. A phylogenetic tree from 16S rRNA of seven Geobacter species showed that G. sulfurreducens PCA is closely related to G. metallireducens GS-15 and G. lovleyi SZ. For evolutionary study, acetate kinase protein is used, which showed closeness to Pelobacter propionicus, Pelobacter carbinolicus, and Deferribacteraceae family bacterial species. These results will be useful to enhance electricity production by using biotechnological approaches.