Table of Contents
ISRN Analytical Chemistry
Volume 2013, Article ID 851713, 14 pages
Research Article

Determination of 25 Trace Element Concentrations in Biological Reference Materials by ICP-MS following Different Microwave-Assisted Acid Digestion Methods Based on Scaling Masses of Digested Samples

1Centro Nacional de Aceleradores (CNA), Universidad de Sevilla, Thomas Alba Edison 7, 41092 Seville, Spain
2Departamento de Fisica Aplicada I, E.T.S. de Ingenieria Agronomica, Universidad de Sevilla, Carretera Utrera km. 1, 41013 Seville, Spain
3Technische Universität München, Physics Department E12, James-Franck-Straße 1, 85748 Garching bei München, Germany

Received 28 April 2013; Accepted 26 May 2013

Academic Editors: H. Alemu, G. Drochioiu, D. J. Fletouris, F. Kandemirli, A. Orte, and I. Zhukov

Copyright © 2013 S. M. Enamorado-Báez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The use of normalized procedures designed for soil and sediment samples (like US-EPA 3051) to chemically prepare some kind of organic samples is a common practice in some laboratories. However, the performance of this method for other matrices has to be demonstrated. Three microwave-assisted digestion procedures with 0.5 g of sample and simplified reagents (10 mL HNO3 alone and mixtures of HNO3/HCl- and HNO3/H2O2 procedures A, B, and C, resp.) were compared for quantitative determination of 25 elements (Be, B, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Ag, Cd, Sb, Cs, Ba, Tl, Pb, Th and U) in three biological reference materials provided by NIST (mussel tissue (MT), tomato leaves (TL), and milk powder (MP)) by ICP-MS. From scaling masses (from 0.1 up to 0.9 g at 0.1 g interval) in procedure A, a linear relationship among instrumental signal and mass of digested sample could be constructed at 99% CL for most of the target analytes. The slope of this linear fit provided the estimation of sample concentration, while the ordinate in origin allowed the identification of matrix interferences which were absent in the reagent blank.