Table of Contents
ISRN Botany
Volume 2013 (2013), Article ID 853121, 7 pages
Research Article

An Effective Procedure for In Vitro Culture of Eleusine coracana (L.) and Its Application

Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Osipovskogo Street 2a, Kiev 04123, Ukraine

Received 21 April 2013; Accepted 15 May 2013

Academic Editors: T. Berberich, K. P. Martin, and S. Ogita

Copyright © 2013 Alla I. Yemets et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Efficient protocols for callus production, plantlet regeneration, protoplast isolation, and micronucleation of finger millet (Eleusine coracana (L.) Gaertn.) were developed. White nodulated calli were formed on medium with N6 macrosalts, MS microsalts, 2.4-dichlorophenoxyacetic acid (2 mg L−1), kinetin (0.4 mg L−1), 1-naphthalene acetic acid (2 mg L−1), and certain additives. It was found that appropriate supplementation leads to formation of numerous shoots. Healthy rooted plantlets formed on hormone-free media. Although different tested additives had no significant effect on percentage of callus formation, it affected callus quality that further dictated plant-forming capacities. Seedlings were better source tissues for protoplasts isolation compared to callus cultures. About protoplasts were isolated from one gram of seedling coleoptyles. Microcolonies were visible after 20–25 days' incubation on KM8p medium supplemented with glutamine (100 mg L−1) and proline (500 mg L−1). Here we also present a procedure of an efficient induction of micronuclei after chlorpropham (10 μM) and cytochalasin-B (20 μM) seedlings treatment with subsequent microprotoplasts isolation. This technique is discussed for the transfer of alien chromosomes and genes from finger millet by microprotoplast-mediated chromosome transfer.