Table of Contents
ISRN Signal Processing
Volume 2013, Article ID 859590, 8 pages
http://dx.doi.org/10.1155/2013/859590
Research Article

High-Resolution Direction-of-Arrival Estimation via Concentric Circular Arrays

Department of Electronics and Communications Engineering, Istanbul Technical University, Maslak 34469, Istanbul, Turkey

Received 5 February 2013; Accepted 28 February 2013

Academic Editors: Y.-S. Chen, L.-M. Cheng, C. S. Lin, and W. Zuo

Copyright © 2013 Serdar Ozgur Ata and Cevdet Isik. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Chandran, Advances in Direction-of-Arrival Estimation, Artech House, Norwood, Mass, USA, 2006.
  2. R. Fallahi and M. Roshandel, “Effect of mutual coupling and configuration of concentric circular array antenna on the signal-to-interference performance in CDMA systems,” Progress in Electromagnetics Research, vol. 76, pp. 427–447, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. E. D. di Claudio, “Asymptotically perfect wideband focusing of multiring circular arrays,” IEEE Transactions on Signal Processing, vol. 53, no. 10, pp. 3661–3673, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. P. S. Naidu, Sensor Array Signal Processing, CRC Press, New York, NY, USA, 2001.
  5. M. Grice, J. Rodenkirch, A. Yakovlev, H. K. Hwang, Z. Aliyazicioglu, and A. Lee, “Direction of arrival estimation using advanced signal processing,” in Proceedings of the 3rd International Conference on Recent Advances in Space Technologies (RAST '07), pp. 515–522, June 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. R. O. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Transactions on Antennas and Propagation, vol. 34, no. 3, pp. 276–280, 1986. View at Google Scholar · View at Scopus
  7. T. Wang, L. S. Yang, J. M. Lei, and S. Z. Yang, “A modified MUSIC to estimate DOA of the coherent narrowband sources based on UCA,” in Proceedings of the International Conference on Communication Technology (ICCT '06), November 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. K. R. Mahmoud, M. El-Adawy, S. M. M. Ibrahem, R. Bansal, and S. H. Zainud-Deen, “A comparison between circular and hexagonal array geometries for smart antenna systems using particle swarm optimization algorithm,” Progress in Electromagnetics Research, vol. 72, pp. 75–90, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Gozasht, G. R. Dadashzadeh, and S. Nikmehr, “A comprehensive performance study of circular and hexagonal array geometries in the lms algorithm for smart antenna applications,” Progress in Electromagnetics Research, vol. 68, pp. 281–296, 2007. View at Google Scholar · View at Scopus
  10. M. Dessouky, H. Sharshar, and Y. Albagory, “Optimum normalized-Gaussian tapering window for side lobe reduction in uniform concentric circular arrays,” Progress in Electromagnetics Research, vol. 69, pp. 35–46, 2007. View at Google Scholar · View at Scopus
  11. M. Dessouky, H. Sharshar, and Y. Albagory, “Efficient sidelobe reduction technique for small-sized concentric circular arrays,” Progress in Electromagnetics Research, vol. 65, pp. 187–200, 2006. View at Google Scholar · View at Scopus
  12. S. C. Chan and H. H. Chen, “Uniform concentric circular arrays with frequency-invariant characteristics—theory, design, adaptive beamforming and DOA estimation,” IEEE Transactions on Signal Processing, vol. 55, no. 1, pp. 165–177, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. S. C. Chan, H. H. Chen, and K. L. Ho, “Adaptive beamforming using frequency invariant uniform concentric circular arrays,” IEEE Transactions on Circuits and Systems I, vol. 54, no. 9, pp. 1938–1949, 2007. View at Publisher · View at Google Scholar · View at Scopus