Table of Contents
ISRN Mechanical Engineering
Volume 2013 (2013), Article ID 865015, 6 pages
http://dx.doi.org/10.1155/2013/865015
Research Article

Thermal Analysis of Air-Core Power Reactors

State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

Received 28 January 2013; Accepted 26 February 2013

Academic Editors: B. Chan, J. K. Chen, J.-I. Jang, and G.-J. Wang

Copyright © 2013 Zhao Yuan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. I. Amoiralis, P. S. Georgilakis, T. D. Kefalas, M. A. Tsili, and A. G. Kladas, “Artificial intelligence combined with hybrid FEM-BE techniques for global transformer optimization,” IEEE Transactions on Magnetics, vol. 43, no. 4, pp. 1633–1636, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. A. J. Oliver, “Estimation of transformer winding temperatures and coolant flows using a general network method,” IEE Proceedings C: Generation Transmission and Distribution, vol. 127, no. 6, pp. 395–405, 1980. View at Google Scholar · View at Scopus
  3. Z. R. Radakovic and M. S. Sorgic, “Basics of detailed thermal-hydraulic model for thermal design of oil power transformers,” IEEE Transactions on Power Delivery, vol. 25, no. 2, pp. 790–802, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. E. A. Simonson and J. A. Lapworth, “Thermal capability assessment for transformers,” in Proceedings of the 2nd International Conference on the Reliability of Transmission and Distribution Equipment, pp. 103–108, March 1995. View at Scopus
  5. A. Weinlader, W. Wu, S. Tenbohlen, and Z. Wang, “Prediction of the oil flow distribution in oil-immersed transformer windings by network modelling and computational fluid dynamics,” Electric Power Applications, IET, vol. 6, pp. 82–90, 2012. View at Publisher · View at Google Scholar
  6. J. Zhang and X. Li, “Coolant flow distribution and pressure loss in ONAN transformer windings—part I: theory and model development,” IEEE Transactions on Power Delivery, vol. 19, no. 1, pp. 186–193, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. E. J. Kranenborg, C. O. Olsson, B. R. Samuelsson, L. Å. Lundin, and R. M. Missing, “Numerical study on mixed convection and thermal streaking in power transformer windings,” in Proceedings of the 5th European Thermal-Sciences Conference, Eindhoven, The Netherlands, 2008.
  8. K. M. Takami, H. Gholnejad, and J. Mahmoudi, “Thermal and hot spot evaluations on oil immersed power Transformers by FEMLAB and MATLAB software's,” in Proceedings of International Conference on Thermal, Mechanical and Multi-Physics Simulation Experiments in Microelectronics and Micro-Systems (EuroSime '07), pp. 1–6, April 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Torriano, M. Chaaban, and P. Picher, “Numerical study of parameters affecting the temperature distribution in a disc-type transformer winding,” Applied Thermal Engineering, vol. 30, no. 14-15, pp. 2034–2044, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Weinläder and S. Tenbohlen, “Thermal-hydraulic investigation of transformer windings by CFD-modelling and measurements,” in Proceedings of the 16th International Symposium on High Voltage Engineering, Cape Town, South Africa, 2009.
  11. J. Smolka and A. J. Nowak, “Shape optimization of coils and cooling ducts in dry-type transformers using computational fluid dynamics and genetic algorithm,” IEEE Transactions on Magnetics, vol. 47, no. 6, pp. 1726–1731, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. X. Yan, Z. Dai, Y. Zhang, and C. Yu, “Fluid-thermal field coupled analysis of air core power reactor,” in Proceedings of the 6th International Conference on Electromagnetic Field Problems and Applications (ICEF '12), pp. 1–4, 2012.
  13. P. E. Burke and T. H. Fawzi, “Effect of eddy losses on the design and modelling of air-cored reactors,” IEEE Transactions on Magnetics, vol. 27, no. 6, pp. 5001–5003, 1991. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Wei, F. Lijun, and X. Tianwei, “The analysis of the Eddy losses for dry type air cored reactor,” Journal of Shenyang Institute of Technology, pp. 79–82, 1999. View at Google Scholar
  15. S. R. Thondapu, M. B. Borage, Y. D. Wanmode, and P. Shrivastava, “Improved expression for estimation of leakage inductance in E core transformer using energy method,” Advances in Power Electronics, vol. 2012, Article ID 635715, 6 pages, 2012. View at Publisher · View at Google Scholar
  16. Q. Yu and S. A. Sebo, “Accurate evaluation of the magnetic field strength of large substation air-core reactor coils,” IEEE Transactions on Power Delivery, vol. 13, no. 4, pp. 1114–1119, 1998. View at Google Scholar · View at Scopus
  17. Q. Yu and S. A. Sebo, “Simplified magnetic field modeling and calculation of large air-core reactor coils,” IEEE Transactions on Magnetics, vol. 32, no. 5, pp. 4281–4283, 1996. View at Google Scholar · View at Scopus