Table of Contents
ISRN Nephrology
Volume 2013, Article ID 865164, 6 pages
http://dx.doi.org/10.5402/2013/865164
Clinical Study

NGAL Usefulness in the Intensive Care Unit Three Hours after Cardiac Surgery

1Department of Intensive Care, CHR Citadelle, Boulevard du 12ème de ligne 1, 4000 Liège, Belgium
2Department of Laboratory Medicine, CHR Citadelle, Boulevard du 12ème de ligne 1, 4000 Liège, Belgium
3Department of Nephrology, CHR Citadelle, Boulevard du 12ème de ligne 1, 4000 Liège, Belgium

Received 17 September 2012; Accepted 2 October 2012

Academic Editors: J. Almirall and A. Meseguer

Copyright © 2013 Geoffray Delcroix et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Uchino, J. A. Kellum, R. Bellomo et al., “Acute renal failure in critically ill patients: a multinational, multicenter study,” Journal of the American Medical Association, vol. 294, no. 7, pp. 813–818, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. E. A. J. Hoste, J. A. Kellum, N. M. Katz, M. H. Rosner, M. Haase, and C. Ronco, “Epidemiology of acute kidney injury,” Contributions to Nephrology, vol. 165, pp. 1–8, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Stein, L. V. de Souza, C. R. Belettini, W. R. Menegazzo, J. R. Viegas, E. M. Costa Pereira et al., “Fluid overload and changes in serum creatinine after cardiac surgery: predictors of mortality and longer intensive care stay. A prospective cohort study,” Critical Care, vol. 16, p. R99, 2012. View at Google Scholar
  4. S. M. Bagshaw, C. George, and R. Bellomo, “A comparison of the RIFLE and AKIN criteria for acute kidney injury in critically ill patients,” Nephrology Dialysis Transplantation, vol. 23, no. 5, pp. 1569–1574, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. R. L. Mehta, J. A. Kellum, S. V. Shah et al., “Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury,” Critical Care, vol. 11, no. 2, p. R31, 2007. View at Google Scholar · View at Scopus
  6. S. M. Bagshaw and R. Bellomo, “Early diagnosis of acute kidney injury,” Current Opinion in Critical Care, vol. 13, no. 6, pp. 638–644, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Moore, R. Bellomo, and A. Nichol, “Biomarkers of acute kidney injury in anesthesia, intensive care and major surgery: from the bench to clinical research to clinical practice,” Minerva Anestesiologica, vol. 76, no. 6, pp. 425–440, 2010. View at Google Scholar · View at Scopus
  8. J. Mishra, M. A. Qing, A. Prada et al., “Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury,” Journal of the American Society of Nephrology, vol. 14, no. 10, pp. 2534–2543, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Mishra, K. Mori, Q. Ma, C. Kelly, J. Barasch, and P. Devarajan, “Neutrophil gelatinase-associated lipocalin: a novel early urinary biomarker for cisplatin nephrotoxicity,” American Journal of Nephrology, vol. 24, no. 3, pp. 307–315, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Haase, R. Bellomo, and A. Haase-Fielitz, “Neutrophil gelatinase-associated lipocalin,” Current Opinion in Critical Care, vol. 16, no. 6, pp. 526–532, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. A. S. Levey, L. A. Stevens, C. H. Schmid et al., “A new equation to estimate glomerular filtration rate,” Annals of Internal Medicine, vol. 150, no. 9, pp. 604–612, 2009. View at Google Scholar · View at Scopus
  12. G. Wagener, M. Jan, M. Kim et al., “Association between increases in urinary neutrophil gelatinase-associated lipocalin and acute renal dysfunction after adult cardiac surgery,” Anesthesiology, vol. 105, no. 3, pp. 485–491, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Wagener, G. Gubitosa, S. Wang, N. Borregaard, M. Kim, and H. T. Lee, “Urinary neutrophil gelatinase-associated lipocalin and acute kidney injury after cardiac surgery,” American Journal of Kidney Diseases, vol. 52, no. 3, pp. 425–433, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Haase-Fielitz, R. Bellomo, P. Devarajan et al., “Novel and conventional serum biomarkers predicting acute kidney injury in adult cardiac surgery—a prospective cohort study,” Critical Care Medicine, vol. 37, no. 2, pp. 553–560, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Mishra, C. Dent, R. Tarabishi et al., “Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery,” The Lancet, vol. 365, no. 9466, pp. 1231–1238, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Haase, R. Bellomo, P. Devarajan et al., “Novel biomarkers early predict the severity of acute kidney injury after cardiac surgery in adults,” Annals of Thoracic Surgery, vol. 88, no. 1, pp. 124–130, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. C. L. Dent, Q. Ma, S. Dastrala et al., “Plasma neutrophil gelatinase-associated lipocalin predicts acute kidney injury, morbidity and mortality after pediatric cardiac surgery: a prospective uncontrolled cohort study,” Critical Care, vol. 11, no. 6, p. R127, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Haase, R. Bellomo, P. Devarajan, P. Schlattmann, and A. Haase-Fielitz, “Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis,” American Journal of Kidney Diseases, vol. 54, no. 6, pp. 1012–1024, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Bachorzewska-Gajewska, J. Malyszko, E. Sitniewska et al., “NGAL (neutrophil gelatinase-associated lipocalin) and cystatin C: are they good predictors of contrast nephropathy after percutaneous coronary interventions in patients with stable angina and normal serum creatinine?” International Journal of Cardiology, vol. 127, no. 2, pp. 290–291, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. W. Ling, N. Zhaohui, H. Ben et al., “Urinary IL-18 and NGAL as early predictive biomarkers in contrast-induced nephropathy after coronary angiography,” Nephron—Clinical Practice, vol. 108, no. 3, pp. c176–c181, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Hirsch, C. Dent, H. Pfriem et al., “NGAL is an early predictive biomarker of contrast-induced nephropathy in children,” Pediatric Nephrology, vol. 22, no. 12, pp. 2089–2095, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Zappitelli, K. K. Washburn, A. A. Arikan et al., “Urine neutrophil gelatinase-associated lipocalin is an early marker of acute kidney injury in critically ill children: a prospective cohort study,” Critical Care, vol. 11, p. R84, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. D. S. Wheeler, P. Devarajan, Q. Ma et al., “Serum neutrophil gelatinase-associated lipocalin (NGAL) as a marker of acute kidney injury in critically ill children with septic shock,” Critical Care Medicine, vol. 36, no. 4, pp. 1297–1303, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. E. D. Siew, L. B. Ware, T. Gebretsadik et al., “Urine neutrophil gelatinase-associated lipocalin moderately predicts acute kidney injury in critically ill adults,” Journal of the American Society of Nephrology, vol. 20, no. 8, pp. 1823–1832, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. T. L. Nickolas, M. J. O'Rourke, J. Yang et al., “Sensitivity and specificity of a single emergency department measurement of urinary neutrophil gelatinase-associated lipocalin for diagnosing acute kidney injury,” Annals of Internal Medicine, vol. 148, no. 11, pp. 810–819, 2008. View at Google Scholar · View at Scopus
  26. J. L. Koyner, “Assessment and diagnosis of renal dysfunction in the ICU,” Chest, vol. 141, pp. 1584–1594, 2012. View at Google Scholar
  27. P. M. Honore, R. Jacobs, O. Joannes-Boyau, L. Verfaillie, J. De Regt, V. Van Gorp et al., “Biomarkers for early diagnosis of AKI in the ICU: ready for prime time use at the bedside?” Annals of Intensive Care, vol. 2, p. 24, 2012. View at Google Scholar
  28. M. Haase, P. Devarajan, A. Haase-Fielitz et al., “The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury: a multicenter pooled analysis of prospective studies,” Journal of the American College of Cardiology, vol. 57, no. 17, pp. 1752–1761, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. M. R. Cullen, P. T. Murray, and M. C. Fitzgibbon, “Establishment of a reference interval for urinary neutrophil gelatinase-associated lipocalin,” Annals of Clinical Biochemistry, vol. 49, pp. 190–193, 2012. View at Google Scholar