Table of Contents
ISRN Cell Biology
Volume 2013 (2013), Article ID 869216, 6 pages
http://dx.doi.org/10.1155/2013/869216
Research Article

UV-C Exposure Induces an Apoptosis-Like Process in Euglena gracilis

Department of Biology and Geology, Baldwin Wallace University, 275 Eastland Road, Berea, OH 44017, USA

Received 4 December 2012; Accepted 27 December 2012

Academic Editors: A. Colanzi and M. Yamaguchi

Copyright © 2013 Michael J. Bumbulis and Brian M. Balog. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Lawen, “Apoptosis—an introduction,” BioEssays, vol. 25, no. 9, pp. 888–896, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Potten and J. Wilson, Apoptosis: The Life and Death of Cells, Cambridge University Press, Cambridge, UK, 2004.
  3. M. Cikala, B. Wilm, E. Hobmayer, A. Böttger, and C. N. David, “Identification of caspases and apoptosis in the simple metazoan Hydra,” Current Biology, vol. 9, no. 17, pp. 959–962, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Böttger and O. Alexandrova, “Programmed cell death in Hydra,” Seminars in Cancer Biology, vol. 17, no. 2, pp. 134–146, 2007. View at Publisher · View at Google Scholar
  5. M. Wiens, A. Krasko, C. I. Müller, and W. E. G. Müller, “Molecular evolution of apoptotic pathways: cloning of key domains from sponges (Bcl-2 homology domains and death domains) and their phylogenetic relationships,” Journal of Molecular Evolution, vol. 50, no. 6, pp. 520–531, 2000. View at Google Scholar · View at Scopus
  6. M. Wiens, A. Krasko, S. Perovic, and W. E. G. Müller, “Caspase-mediated apoptosis in sponges: cloning and function of the phylogenetic oldest apoptotic proteases from metazoa,” Biochimica et Biophysica Acta, vol. 1593, no. 2-3, pp. 179–189, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. A. V. Gordeeva, Y. A. Labas, and R. A. Zvyagilskaya, “Apoptosis in unicellular organisms: mechanisms and evolution,” Biochemistry, vol. 69, no. 10, pp. 1055–1066, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Deponte, “Programmed cell death in protists,” Biochimica et Biophysica Acta, vol. 1783, no. 7, pp. 1396–1405, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Madeo, E. Herker, S. Wissing, H. Jungwirth, T. Eisenberg, and K. U. Fröhlich, “Apoptosis in yeast,” Current Opinion in Microbiology, vol. 7, pp. 655–660, 2004. View at Publisher · View at Google Scholar
  10. A. Debrabant, N. Lee, S. Bertholet, R. Duncan, and H. L. Nakhasi, “Programmed cell death in trypanosomatids and other unicellular organisms,” International Journal for Parasitology, vol. 33, no. 3, pp. 257–267, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. E. L. Ridgley, Z. H. Xiong, and L. Ruben, “Reactive oxygen species activate a Ca2+-dependent cell death pathway in the unicellular organism Trypanosoma brucei brucei,” Biochemical Journal, vol. 340, no. 1, pp. 33–40, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. S. B. Mukherjee, M. Das, G. Sudhandiran, and C. Shaha, “Increase in cytosolic Ca2+ levels through the activation of non-selective cation channels induced by oxidative stress causes mitochondrial depolarization leading to apoptosis-like death in Leishmania donovani promastigotes,” The Journal of Biological Chemistry, vol. 277, no. 27, pp. 24717–24727, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. A. G. B. Simpson, E. E. Gill, H. A. Callahan, R. W. Litaker, and A. J. Roger, “Early evolution within kinetoplastids (Euglenozoa), and the late emergence of trypanosomatids,” Protist, vol. 155, no. 4, pp. 407–422, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Li, J. A. Bush, and V. C. Ho, “Effect of retinoic acid on apoptosis and DNA repair in human keratinocytes after UVB irradiation,” Journal of Cutaneous Medicine and Surgery, vol. 4, no. 1, pp. 2–7, 2000. View at Google Scholar
  15. E. B. Sorensen and P. W. Mesner, “IgH-2 cells: a reptilian model for apoptotic studies,” Comparative Biochemistry and Physiology, vol. 140, no. 1, pp. 163–170, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. M. A. Menze, G. Fortner, S. Nag, and S. C. Hand, “Mechanisms of apoptosis in crustacea: what conditions induce versus suppress cell death?” Apoptosis, vol. 15, no. 3, pp. 293–312, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Stergiou, R. Eberhard, K. Doukoumetzidis, and M. O. Hengartner, “NER and HR pathways act sequentially to promote UV-C-induced germ cell apoptosis in Caenorhabditis elegans,” Cell Death and Differentiation, vol. 18, no. 5, pp. 897–906, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. W. E. G. Müller, H. Ushijima, R. Batel et al., “Novel mechanism for the radiation-induced bystander effect: nitric oxide and ethylene determine the response in sponge cells,” Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, vol. 597, no. 1-2, pp. 62–72, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Del Carratore, C. Della Croce, M. Simili, E. Taccini, M. Scavuzzo, and S. Sbrana, “Cell cycle and morphological alterations as indicative of apoptosis promoted by UV irradiation in S. cerevisiae,” Mutation Research, vol. 513, no. 1-2, pp. 183–191, 2002. View at Publisher · View at Google Scholar
  20. S. Moharikar, J. S. D'Souza, A. B. Kulkarni, and B. J. Rao, “Apoptotic-like cell death pathway is induced in unicellular chlorophyte Chlamydomonas reinhardtii (Chlorophyceae) cells following UV irradiation: detection and functional analyses,” Journal of Phycology, vol. 42, no. 2, pp. 423–433, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Jiménez, J. M. Capasso, C. L. Edelstein et al., “Different ways to die: cell death modes of the unicellular chlorophyte Dunaliella viridis exposed to various environmental stresses are mediated by the caspase-like activity DEVDase,” Journal of Experimental Botany, vol. 60, no. 3, pp. 815–828, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. S. P. Singh, D. P. Häder, and R. P. Sinha, “Cyanobacteria and ultraviolet radiation (UVR) stress: mitigation strategies,” Ageing Research Reviews, vol. 9, no. 2, pp. 79–90, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Scheuerlein, S. Treml, B. Thar, U. K. Tirlapur, and D. P. Hader, “Evidence for UV-B-induced DNA degradation in Euglena gracilis mediated by activation of metal-dependent nucleases,” Journal of Photochemistry and Photobiology B, vol. 31, no. 3, pp. 113–123, 1995. View at Publisher · View at Google Scholar · View at Scopus
  24. M. J. Bumbulis, G. Wroblewski, D. McKean, and D. R. Setzer, “Genetic analysis of Xenopus transcription factor IIIA,” Journal of Molecular Biology, vol. 284, no. 5, pp. 1307–1322, 1998. View at Publisher · View at Google Scholar · View at Scopus
  25. N. J. Jardine and J. L. Leaver, “The fractionation of histones isolated from Euglena gracilis,” Biochemical Journal, vol. 169, no. 1, pp. 103–111, 1978. View at Google Scholar · View at Scopus
  26. S. Delpech, M. H. Bre, A. Mazen et al., “Electron microscopic visualization of nucleosomal organization in B12 starved and control Euglena chromatin,” Cell Biology International Reports, vol. 6, no. 2, pp. 197–203, 1982. View at Google Scholar · View at Scopus
  27. M. Segovia, L. Haramaty, J. A. Berges, and P. G. Falkowski, “Cell death in the unicellular chlorophyte Dunaliella tertiolecta. A hypothesis on the evolution of apoptosis in higher plants and metazoans,” Plant Physiology, vol. 132, no. 1, pp. 99–105, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Preta and B. Fadeel, “Scythe cleavage during Fas (APO-1)-and staurosporine-mediated apoptosis,” FEBS Letters, vol. 586, no. 6, pp. 747–752, 2012. View at Publisher · View at Google Scholar
  29. D. M. Kovacs, R. Mancini, J. Henderson et al., “Staurosporine-induced activation of caspase-3 is potentiated by presenilin 1 familial Alzheimer's disease mutations in human neuroglioma cells,” Journal of Neurochemistry, vol. 73, no. 6, pp. 2278–2285, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. H. J. Chae, J. S. Kang, J. O. Byun et al., “Molecular mechanism of staurosporine-induced apoptosis in osteoblasts,” Pharmacological Research, vol. 42, no. 4, pp. 373–381, 2000. View at Publisher · View at Google Scholar · View at Scopus