Table of Contents
ISRN Chemical Engineering
Volume 2013, Article ID 907425, 19 pages
http://dx.doi.org/10.1155/2013/907425
Review Article

Zeolites: Promised Materials for the Sustainable Production of Hydrogen

Instituto de Tecnología Química (UPV-CSIC), Universidad Politécnica de Valencia, Avenida de los Naranjos s/n, 46022 Valencia, Spain

Received 14 November 2012; Accepted 16 December 2012

Academic Editors: M. J. Politi, I. Poulios, and R. Sedev

Copyright © 2013 Antonio Chica. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. F. Cronstedt, “Rön och beskrifning om en obekant bärg art, som kallas Zeolites,” Akademeins. Handlingar, Stockholm, vol. 18, p. 120, 1756. View at Google Scholar
  2. R. M. Barrer and D. A. Ibbison, “Occlusion of hydrocarbons by chabazite and analcite,” Transactions of the Faraday Society, vol. 40, pp. 195–206, 1944. View at Publisher · View at Google Scholar
  3. R. M. Barrer, “Process for the manufacture of crystalline absorbents,” US Patent 2413134, 1946.
  4. R. M. Barrer, “Separation of mixtures using zeolites as molecular sieves. I. Three classes of molecular-sieve zeolite,” Journal of the Society of Chemical Industry, vol. 64, p. 130, 1945. View at Google Scholar
  5. D. W. Breck, “Crystalline molecular sieves,” Journal of Chemical Education, vol. 41, no. 12, pp. 678–689, 1964. View at Google Scholar · View at Scopus
  6. R. M. Milton, “Performed zeolites and silicates,” in Molecular Sieves, p. 199, Society of Chemical Industry, London, UK, 1968. View at Google Scholar
  7. J. A. Rabo, “Unifying principles in zeolite chemistry and catalysis,” Catalysis Reviews: Science and Engineering, vol. 23, no. 1-2, pp. 293–313, 1981. View at Publisher · View at Google Scholar
  8. E. M. Flanigen, “Zeolites and molecular sieves. An historical perspective,” in Introduction To Zeolite Science and Practice, H. van Bekkum, E. M. Flanigen, and J. C. Jander, Eds., Studies in Surface Science and Catalysis, pp. 11–37, Elsevier, Amsterdam, The Netherlands, 2nd Completely Revised and Expanded Edition edition, 1991. View at Google Scholar
  9. E. Houdry, W. F. Burt, A. E. Pew, and W. A. Peters, “The houdry process,” Oil and Gas Journal, Engineering and Operating Section, vol. 37, pp. 40–45, 1938. View at Google Scholar
  10. http://www.iza-online.org/.
  11. J. M. Newsman, “The zeolite cage structure,” Science, vol. 231, no. 4742, pp. 1093–1099, 1986. View at Publisher · View at Google Scholar
  12. W. M. Meier and D. H. Olson, Atlas of Zeolite Structure Types, Structure Commission of the International Zeolite Asociation, 1978.
  13. C. C. Freyhardt, M. Tsapatsis, R. F. Lobo, K. J. Balkus Jr., and M. E. Davis, “A high-silica zeolite with a 14-tetrahedral-atom pore opening,” Nature, vol. 381, pp. 295–298, 1996. View at Publisher · View at Google Scholar
  14. R. F. Lobo, M. Tsapatsis, C. C. Freyhardt et al., “Characterization of the extra-large-pore zeolite UTD-1,” Journal of the American Chemical Society, vol. 119, no. 36, pp. 8474–8484, 1997. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Wessels, C. Baerlocher, L. B. McCusker, and E. J. Creyghton, “An ordered form of the extra-large-pore zeolite UTD-1: synthesis and structure analysis from powder diffraction data,” Journal of the American Chemical Society, vol. 121, no. 26, pp. 6242–6247, 1999. View at Publisher · View at Google Scholar
  16. P. Wagner, M. Yoshikawa, M. Lovallo, K. Tsuji, M. Taspatsis, and M. E. Davis, “CIT-5: a high-silica zeolite with 14-ring pores,” Chemical Communications, no. 22, pp. 2179–2180, 1997. View at Google Scholar · View at Scopus
  17. A. Burton, S. Elomari, C. Y. Chen et al., “SSZ-53 and SSZ-59: two novel extra-large pore zeolites,” Chemistry, vol. 9, no. 23, pp. 5737–5748, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. K. G. Strohmaier and D. E. W. Vaughan, “Structure of the first silicate molecular sieve with 18-ring pore openings, ECR-34,” Journal of the American Chemical Society, vol. 125, no. 51, pp. 16035–16039, 2003. View at Publisher · View at Google Scholar
  19. A. Corma, M. J. Diaz-Cabañas, J. L. Jorda, C. Martinez, and M. Moliner, “High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings,” Nature, vol. 443, pp. 842–845, 2006. View at Publisher · View at Google Scholar
  20. J. L. Sun, C. Bonneau, A. Cantin et al., “The ITQ-37 mesoporous chiral zeolite,” Nature, vol. 458, no. 7242, pp. 1154–1157, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. M. E. Davis, C. Saldarriaga, C. Montes, J. Garces, and C. Crowdert, “A molecular sieve with eighteen-membered rings,” Nature, vol. 331, no. 6158, pp. 698–699, 1988. View at Google Scholar · View at Scopus
  22. S. M. Csicsery, “shape-selective catalysis in zeolites,” in Zeolite Chemistry and Catalysis, vol. 171, p. 680, 1976. View at Google Scholar
  23. S. M. Csicsery, “Shape-selective catalysis in zeolites,” Zeolites, vol. 4, no. 3, pp. 202–213, 1984. View at Google Scholar · View at Scopus
  24. E. G. Derouane, “New aspects of molecular shape-selectivity: catalysis by zeolite ZSM-5,” Studies in Surface Science and Catalysis, vol. 5, pp. 5–18, 1980. View at Publisher · View at Google Scholar
  25. G. E. Derouane, Zeolite Science and the Technology, vol. 80 of NATO ASI Series E, Martinus Nijhoff, The Hague, The Netherlands, 1984.
  26. A. Corma, “Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions,” Chemical Reviews, vol. 95, no. 3, pp. 559–614, 1995. View at Publisher · View at Google Scholar
  27. A. Corma and A. Martinez, “Zeolites and Zeotypes as catalysts,” Advanced Materials, vol. 7, pp. 137–144, 1995. View at Publisher · View at Google Scholar
  28. J. Weitkamp and S. Ernst, “Large pore molecular sieves: chapter 5 catalytic test reactions for probing the pore width of large and super-large pore molecular sieves,” Catalysis Today, vol. 19, no. 1, pp. 107–149, 1994. View at Publisher · View at Google Scholar
  29. W. W. Kaeding, C. Chu, L. B. Young, B. Weinstein, and S. A. Butter, “Selective alkylation of toluene with methanol to produce para-Xylene,” Journal of Catalysis, vol. 67, no. 1, pp. 159–174, 1981. View at Google Scholar · View at Scopus
  30. R. A. Anderson, “Molecular Sieve Adsorbent Applications State of the Art,” in Molecular Sieves-II, vol. 40 of ACS Symposium Series, chapter 53, pp. 637–649, 1977. View at Publisher · View at Google Scholar
  31. E. M. Flanigen, “Molecular sieve zeolite technology: the first twenty-five years,” in Proceedings of the Properties and Applications of Zeolites, p. 760, Naples, Italy, 1980.
  32. D. B. Broughton, “Bulk separations via adsorptions,” Chemical Engineering Progress, vol. 73, p. 49, 1977. View at Google Scholar
  33. H. Odawara, Y. Noguchi, and M. Ohno, “Fructose is effectively separated from a mixture of sugars by contacting an aqueous solution of a mixture of sugars with crystalline alumino-silicate,” US Patent 4014711, 1977.
  34. R. W. Neuziland and J. W. Preighitz, US Patent 4024331, 1977.
  35. H. Minato and T. Tamura, Natural Zeolites: Ocurrence, Properties and Use, Pergamon, London, UK, 1978.
  36. J. Nováková and Z. Dolejšek, “A comment on the oxidation of coke deposited on zeolites,” Zeolites, vol. 10, no. 3, pp. 189–192, 1990. View at Google Scholar
  37. A. P. Antunes, M. F. Ribeiro, J. M. Silva, F. R. Ribeiro, P. Magnoux, and M. Guisnet, “Catalytic oxidation of toluene over CuNaHY zeolites coke formation and removal,” Applied Catalysis B, vol. 33, no. 2, pp. 149–164, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. A. P. Bolton, Experimental Methods in Catalytic Research, vol. 2, Academic Press, New York, NY, USA, 1976.
  39. E. M. Flanigen, “Zeolites, science and technology,” in Proceedings of the NATO ASI, F. R. Ribeiro, Ed., p. 4, Atinus Nijhoff, 1984.
  40. H. W. Haynes, “Chemical, physical, and catalytic properties of large pore acidic zeolites,” Catalysis Reviews, vol. 17, no. 2, pp. 273–336, 1978. View at Google Scholar · View at Scopus
  41. E. M. Flanigen, R. W. Broach, and S. T. Wilson, Introduciton, Zeolites in Industrial Separation and Catalysis, Wiley-VCH, Weinheim, Germany, 2010.
  42. H. Beyer and I. Belenykaja, Catalyisis by the Zeolites, Edited by Y. Imelik, Elsevier, Amsterdam, The Netherlands, 1987.
  43. J. Scherzer and J. L. Bass, “Infrared spectra of ultrastable zeolites derived from type Y zeolites,” Journal of Catalysis, vol. 28, no. 1, pp. 101–115, 1973. View at Publisher · View at Google Scholar
  44. N. Y. Chen, “Hydrophobic properties of zeolites,” The Journal of Physical Chemistry, vol. 80, no. 1, pp. 60–64, 1976. View at Publisher · View at Google Scholar
  45. E. M. Flanigen, J. M. Bennett, R. W. Grose et al., “Silicalite, a new hydrophobic crystalline silica molecular sieve,” Nature, vol. 271, no. 5645, pp. 512–516, 1978. View at Publisher · View at Google Scholar · View at Scopus
  46. E. M. Flanigen and R. L. Patton, “Silica polymorph and process for preparing same,” US Patent 4073865, 1978.
  47. D. W. Breck, Zeolite Molecular Sieves, Structure, Chemistry and Use, John Wiley & Sons, New York, NY, USA, 1974.
  48. R. M. Barret, Zeolites and Clay Minerals As Sorbents and Molecular Sieves, Academic Press, London, UK, 1978.
  49. D. W. Breck, Zeolite Molecular Sieves, Wiley, New York, NY, USA, 1974.
  50. J. Scherzer, J. L. Bass, and F. G. Hunter, “Structural characterization of hydrothermally treated lanthanum Y zeolites. I. Framework vibrational spectra and crystal structure,” The Journal of Physical Chemistry, vol. 79, no. 12, pp. 1194–1199, 1975. View at Publisher · View at Google Scholar
  51. P. B. Venuto, L. A. Hamilton, and P. S. Landis, “Organic reactions catalyzed by crystalline aluminosilicates: II. Alkylation reactions: mechanistic and aging considerations,” Journal of Catalysis, vol. 5, no. 3, pp. 484–493, 1996. View at Publisher · View at Google Scholar
  52. J. W. Ward, “Spectroscopic study of the surface of zeolite Y. II. Infrared spectra of structural hydroxyl groups and adsorbed water on alkali, alkaline earth, and rare earth ion-exchanged zeolites,” The Journal of Physical Chemistry, vol. 72, no. 12, pp. 4211–4223, 1968. View at Publisher · View at Google Scholar
  53. J. Scherzer, J. L. Bass, and F. G. Hunter, “Structural characterization of hydrothermally treated lanthanum Y zeolites. I. Framework vibrational spectra and crystal structure,” The Journal of Physical Chemistry, vol. 79, no. 12, pp. 1194–1199, 1975. View at Publisher · View at Google Scholar
  54. G. A. Ozin, A. Kuperman, and A. Stein, “Advanced zeolite, materials science,” Angewandte Chemie, vol. 28, no. 3, pp. 359–376, 1989. View at Publisher · View at Google Scholar
  55. Z. Wang, A. Mitra, H. Wang, L. Huang, and Y. Yan, “Pure-silica zeolite low-k dielectric thin films,” Advanced Materials, vol. 13, no. 10, pp. 746–749, 2001. View at Google Scholar
  56. European Communities Office for Official Publications, Hydrogen and electricity. New carriers and novel technologies for a future clean and sustainable energy economy. EU Brochure for the Sixth Framework Programme. KI-46-02-533-EN-D, 2002.
  57. M. A. Peña, J. P. Gomez, and G. J. L. Fierro, “New catalytic routes for syngas and hydrogen production,” Applied Catalysis A, vol. 144, no. 1-2, pp. 7–57, 1996. View at Publisher · View at Google Scholar
  58. J. A. Armor, “The multiple roles for catalysis in the production of H2,” Applied Catalysis A, vol. 176, no. 2, pp. 159–176, 1998. View at Publisher · View at Google Scholar
  59. D. L. Trimm and Z. I. Onsan, “Onboard fuel conversion for hydrogen-fuel-cell-driven vehicles,” Catalysis Reviews: Science and Engineering, vol. 43, no. 1-2, pp. 31–84, 2001. View at Publisher · View at Google Scholar
  60. R. M. Navarro, M. A. Peña, and J. L. G. Fierro, “Hydrogen production reactions from carbon feedstocks: fossil fuels and biomass,” Chemical Reviews, vol. 107, no. 10, pp. 3952–3991, 2007. View at Publisher · View at Google Scholar
  61. T. A. Milne, C. C. Elam, and R. J. Evans, “Hydrogen from biomass,” Report for the International Energy Agency IEA/H2/TR-02/001, 2002. View at Google Scholar
  62. P. C. Hallenbeck and J. R. Benemann, “Biological hydrogen production; Fundamentals and limiting processes,” International Journal of Hydrogen Energy, vol. 27, no. 11-12, pp. 1185–1193, 2002. View at Publisher · View at Google Scholar · View at Scopus
  63. D. Gardner, “Hydrogen production from renewables,” Renewable Energy Focus, vol. 9, no. 7, pp. 34–37, 2009. View at Publisher · View at Google Scholar
  64. G. A. Deluga, J. R. Salge, L. D. Schmidt, and X. E. Verykios, “Renewable hydrogen from ethanol by autothermal reforming,” Science, vol. 303, no. 5660, pp. 993–997, 2004. View at Publisher · View at Google Scholar · View at Scopus
  65. J. R. Salge, B. J. Dreyer, P. J. Dauenhauer, and L. D. Schmidt, “Renewable hydrogen from nonvolatile fuels by reactive flash volatilization,” Science, vol. 314, no. 5800, pp. 801–804, 2006. View at Publisher · View at Google Scholar
  66. R. M. Navarro, M. C. Sánchez-Sánchez, M. C. Alvarez-Galvan, F. D. Valle, and J. L. G. Fierro, “Hydrogen production from renewable sources: biomass and photocatalytic opportunities,” Energy and Environmental Science, vol. 2, no. 1, pp. 35–54, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. P. D. Vaidya and A. E. Rodrigues, “Insight into steam reforming of ethanol to produce hydrogen for fuel cells,” Chemical Engineering Journal, vol. 117, no. 1, pp. 39–49, 2006. View at Publisher · View at Google Scholar
  68. G. Kolios, B. Glöckler, A. Gritsch, A. Morillo, and G. Eigenberger, “Heat-integrated reactor concepts for hydrogen production by methane steam reforming,” Fuel Cells, vol. 5, no. 1, pp. 52–65, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. A. Haryanto, S. Fernando, N. Murali, and S. Adhikari, “Current status of hydrogen production techniques by steam reforming of ethanol: a review,” Energy and Fuels, vol. 19, no. 5, pp. 2098–2106, 2005. View at Publisher · View at Google Scholar · View at Scopus
  70. M. Ni, D. Y. C. Leung, and M. K. H. Leung, “A review on reforming bio-ethanol for hydrogen production,” International Journal of Hydrogen Energy, vol. 32, no. 15, pp. 3238–3247, 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. G. A. Deluga, J. R. Salge, L. D. Schmidt, and X. E. Verykios, “Renewable hydrogen from ethanol by autothermal reforming,” Science, vol. 303, no. 5660, pp. 993–997, 2004. View at Publisher · View at Google Scholar · View at Scopus
  72. A. N. Fatsikostas and X. E. Verykios, “Reaction network of steam reforming of ethanol over Ni-based catalysts,” Journal of Catalysis, vol. 225, no. 2, pp. 439–452, 2004. View at Publisher · View at Google Scholar · View at Scopus
  73. J. Llorca, P. Ramírez de la Piscina, J. Sales, and N. Homs, “Direct production of hydrogen from ethanolic aqueous solutions over oxide catalysts,” Chemical Communications, no. 7, pp. 641–642, 2001. View at Google Scholar · View at Scopus
  74. C. Diagne, H. Idriss, and A. Kiennemann, “Hydrogen production by ethanol reforming over Rh/CeO2-ZrO2 catalysts,” Catalysis Communications, vol. 3, no. 12, pp. 565–571, 2002. View at Publisher · View at Google Scholar · View at Scopus
  75. J. Llorca, P. Ramírez De La Piscina, J. A. Dalmon, J. Sales, and N. Homs, “Co-free hydrogen from steam-reforming of bioethanol over ZnO-supported cobalt catalysts: effect of the metallic precursor,” Applied Catalysis B, vol. 43, no. 4, pp. 355–369, 2003. View at Publisher · View at Google Scholar · View at Scopus
  76. E. Vanhaecke, A. C. Roger, J. C. Vargas, and A. Kiennemann, “Challenges & opportunities to bring hydrogen & fuel cells to an international market,” in Proceedings of the1st European Hydrogen Energy Conference, p. 2, Grenoble, France, September 2003.
  77. M. S. Batista, R. K. S. Santos, E. M. Assaf, J. M. Assaf, and E. A. Ticianelli, “High efficiency steam reforming of ethanol by cobalt-based catalysts,” Journal of Power Sources, vol. 134, no. 1, pp. 27–32, 2004. View at Publisher · View at Google Scholar · View at Scopus
  78. A. Kaddouri and C. Mazzocchia, “A study of the influence of the synthesis conditions upon the catalytic properties of Co/SiO2 or Co/Al2O3 catalysts used for ethanol steam reforming,” Catalysis Communications, vol. 5, no. 6, pp. 339–345, 2004. View at Publisher · View at Google Scholar
  79. J. Llorca, J. A. Dalmon, P. Ramírez De la Piscina, and N. Homs, “In situ magnetic characterisation of supported cobalt catalysts under steam-reforming of ethanol,” Applied Catalysis A, vol. 243, no. 2, pp. 261–269, 2003. View at Publisher · View at Google Scholar · View at Scopus
  80. F. Haga, T. Nakajima, H. Miya, and S. Mishima, “Catalytic properties of supported cobalt catalysts for steam reforming of ethanol,” Catalysis Letters, vol. 48, no. 1-2, pp. 223–227, 1997. View at Google Scholar · View at Scopus
  81. H. Idriss, “Ethanol reactions over the surfaces of noble metal/cerium oxide catalysts,” Platinum Metals Review, vol. 48, no. 3, pp. 105–115, 2004. View at Publisher · View at Google Scholar
  82. J. Bussi, N. Bespalko, S. Veiga, A. Amaya, R. Faccio, and M. C. Abello, “The preparation and properties of Ni-La-Zr catalysts for the steam reforming of ethanol,” Catalysis Communications, vol. 10, no. 1, pp. 33–38, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. G. B. Sun, K. Hidajat, X. S. Wu, and S. Kawi, “A crucial role of surface oxygen mobility on nanocrystalline Y2O3 support for oxidative steam reforming of ethanol to hydrogen over Ni/Y2O3 catalysts,” Applied Catalysis B, vol. 81, no. 3-4, pp. 303–312, 2008. View at Publisher · View at Google Scholar
  84. E. B. Pereira, N. Homs, S. Marti, J. L. G. Fierro, and P. R. de la Piscina, “Oxidative steam-reforming of ethanol over Co/SiO2, Co-Rh/SiO2 and Co-Ru/SiO2 catalysts: catalytic behavior and deactivation/regeneration processes,” Journal of Catalysis, vol. 257, no. 1, pp. 206–214, 2008. View at Publisher · View at Google Scholar
  85. H. V. Fajardo, L. F. D. Probst, N. L. V. Carreno, I. T. S. Garcia, and A. Valentini, “Hydrogen production from ethanol steam reforming over Ni/CeO2 nanocomposite catalysts,” Catalysis Letters, vol. 119, no. 3-4, pp. 228–236, 2007. View at Publisher · View at Google Scholar
  86. S. Cavallaro, “Ethanol steam reforming on Rh/Al2O3 Catalysts,” Energy and Fuels, vol. 14, no. 6, pp. 1195–1199, 2000. View at Google Scholar · View at Scopus
  87. M. Tóth, M. Dömök, J. Raskóx, A. Hancz, and A. Erdohelyi, “Catalysts: a comparison between cobalt integration and cobalt. Impregnation,” in Presented in the Technical Program, Pisa, Italy, May 2004.
  88. V. Fierro, V. Klouz, O. Akdim, and C. Mirodatos, “Oxidative reforming of biomass derived ethanol for hydrogen production in fuel cell applications,” Catalysis Today, vol. 75, no. 1–4, pp. 141–144, 2002. View at Publisher · View at Google Scholar · View at Scopus
  89. S. Velu, N. Satoh, C. S. Gopinath, and K. Suzuki, “Oxidative reforming of bio-ethanol over CuNiZnAl mixed oxide catalysts for hydrogen production,” Catalysis Letters, vol. 82, no. 1-2, pp. 145–152, 2002. View at Publisher · View at Google Scholar
  90. M. A. Goula, S. K. Kontou, and P. E. Tsiakaras, “Hydrogen production by ethanol steam reforming over a commercial Pd/γ-Al2O3 catalyst,” Applied Catalysis B, vol. 49, no. 2, pp. 135–144, 2004. View at Publisher · View at Google Scholar · View at Scopus
  91. P. Sheng and H. Idriss, “Ethanol reactions over Au-Rh/CeO2 catalysts. Total decomposition and H2 formation,” Journal of Vacuum Science & Technology A, vol. 22, no. 4, article 1652, 7 pages, 2004. View at Publisher · View at Google Scholar
  92. D. Srinivas, C. V. V. Satyanarayana, H. S. Potdar, and P. Ratnasamy, “Structural studies on NiO-CeO2-ZrO2 catalysts for steam reforming of ethanol,” Applied Catalysis A, vol. 246, no. 2, pp. 323–334, 2003. View at Publisher · View at Google Scholar · View at Scopus
  93. N. R. C. F. Machado, R. C. P. Rizzo, and P. P. S. Peguen, “Performance of catalysts with Nb2O5 for hydrogen production from ethanol steam reforming,” Acta Science, vol. 26, pp. 1637–1642, 2002. View at Google Scholar
  94. V. V. Galvita, V. D. Belyaev, V. A. Semikolenov, P. Tsiakaras, A. Frumin, and V. A. Sobyanin, “Ethanol decomposition over Pd-based catalyst in the presence of steam,” Reaction Kinetics and Catalysis Letters, vol. 76, no. 2, pp. 343–351, 2002. View at Publisher · View at Google Scholar · View at Scopus
  95. A. Platon, H. S. Roh, D. L. King, and Y. Wang, “Deactivation studies of Rh/Ce0.8Zr0.2O2 catalysts in low temperature ethanol steam reforming,” Topics in Catalysis, vol. 46, no. 3-4, pp. 374–379, 2007. View at Publisher · View at Google Scholar
  96. A. Birot, F. Epron, C. Descorme, and D. Duprez, “Ethanol steam reforming over Rh/CexZr1-xO2 catalysts: impact of the CO-CO2-CH4 interconversion reactions on the H2 production,” Applied Catalysis B, vol. 79, no. 1, pp. 17–25, 2008. View at Publisher · View at Google Scholar · View at Scopus
  97. W. Cai, F. Wang, E. Zhan, A. C. Van Veen, C. Mirodatos, and W. Shen, “Hydrogen production from ethanol over Ir/CeO2 catalysts: a comparative study of steam reforming, partial oxidation and oxidative steam reforming,” Journal of Catalysis, vol. 257, no. 1, pp. 96–107, 2008. View at Publisher · View at Google Scholar · View at Scopus
  98. M. Domok, K. Baan, T. Kecskes, and A. Erdohelyi, “Promoting mechanism of potassium in the reforming of ethanol on Pt/Al2O3 Catalyst,” Catalysis Letters, vol. 126, no. 1-2, pp. 49–57, 2008. View at Publisher · View at Google Scholar
  99. A. C. Bagasiannis, P. Panagiotopoulou, and X. E. Verykios, “Preface,” Topics in Catalysis, vol. 51, no. 1–4, p. 1, 2008. View at Publisher · View at Google Scholar
  100. J. Llorca, N. Homs, J. Sales, and P. Ramírez de la Piscina, “Efficient production of hydrogen over supported cobalt catalysts from ethanol steam reforming,” Journal of Catalysis, vol. 209, no. 2, pp. 306–317, 2002. View at Publisher · View at Google Scholar · View at Scopus
  101. J. F. da Costa Serra, R. Guil-López, and A. Chica, “Co/ZnO and Ni/ZnO catalysts for hydrogen production by bioethanol steam reforming. Influence of ZnO support morphology on the catalytic properties of Co and Ni active phases,” International Journal of Hydrogen Energy, vol. 13, no. 143, pp. 6709–6716, 2010. View at Publisher · View at Google Scholar
  102. A. Chica and S. Sayas, “Effective and stable bioethanol steam reforming catalyst based on Ni and Co supported on all-silica delaminated ITQ-2 zeolite,” Catalysis Today, vol. 146, no. 1-2, pp. 37–43, 2009. View at Publisher · View at Google Scholar · View at Scopus
  103. F. C. Campos-Skrobot, R. C. P. Rizzo-Domingues, N. R. C. Fernandes-Machado, and M. P. Cantão, “Novel zeolite-supported rhodium catalysts for ethanol steam reforming,” Journal of Power Sources, vol. 183, no. 2, pp. 713–716, 2008. View at Publisher · View at Google Scholar · View at Scopus
  104. H. Inokawa, S. Nishimoto, Y. Kameshima, and M. Miyake, “Difference in the catalytic activity of transition metals and their cations loaded in zeolite y for ethanol steam reforming,” International Journal of Hydrogen Energy, vol. 35, no. 21, pp. 11719–11724, 2010. View at Publisher · View at Google Scholar · View at Scopus
  105. J. F. da Costa Serra and A. Chica, “Bioethanol steam reforming on Co/ITQ-18 catalyst: effect of the crystalline structure of the delaminated zeolite ITQ-18,” International Journal of Hydrogen Energy, vol. 36, no. 6, pp. 3862–3869, 2011. View at Publisher · View at Google Scholar · View at Scopus
  106. A. Corma, V. Fornes, and U. Dıaz, “ITQ-18 a new delaminated stable zeolite,” Chemical Communications, no. 24, pp. 2642–2643, 2001. View at Publisher · View at Google Scholar
  107. B. S. Kwak, J. S. Lee, J. S. Lee, B.-H Choi, M. J. Ji, and M. Kang, “Hydrogen-rich gas production from ethanol steam reforming over Ni/Ga/Mg/Zeolite Y catalysts at mild temperature,” Applied Energy, vol. 88, no. 12, pp. 4366–4375, 2011. View at Publisher · View at Google Scholar
  108. H. Inokawa, S. Nishimoto, Y. Kameshima, and M. Miyake, “Promotion of H2 production from ethanol steam reforming by zeolite basicity,” International Journal of Hydrogen Energy, vol. 36, no. 23, pp. 15195–15202, 2011. View at Publisher · View at Google Scholar
  109. J. S. Lee, J. Kim, and M. Kang, “Hydrogen production from ethanol steam reforming over SnO2-K2O/zeolite Y catalyst,” Bulletin of the Korean Chemical Society, vol. 32, no. 6, pp. 1912–1920, 2011. View at Publisher · View at Google Scholar
  110. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, “Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism,” Nature, vol. 359, no. 6397, pp. 710–712, 1992. View at Google Scholar · View at Scopus
  111. S. Inagaki, Y. Fuhushima, and K. J. Kuroda, “Synthesis of highly ordered mesoporous materials from a layered polysilicate,” Journal of the Chemical Society, Chemical Communications, no. 8, pp. 680–682, 1993. View at Publisher · View at Google Scholar
  112. Y. Tao, H. Kanoh, L. Abrams, and K. Kaneko, “Mesopore-modified zeolites: preparation, characterization, and applications,” Chemical Reviews, vol. 106, no. 3, pp. 896–910, 2006. View at Publisher · View at Google Scholar · View at Scopus
  113. J. Perez-Ramirez, C. H. Christensen, K. Egeblad, C. H. Christensen, and J. C. Groen, “Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design,” CChemical Society Reviews, vol. 37, no. 11, pp. 2530–2542, 2008. View at Publisher · View at Google Scholar
  114. M. Ogura, “Towards realization of a micro- and mesoporous composite silicate catalyst,” Catalysis Surveys from Asia, vol. 12, no. 1, pp. 16–27, 2008. View at Publisher · View at Google Scholar
  115. A. Corma, “Application of zeolites in fluid catalytic cracking and related processes,” Studies in Surface Science and Catalysis, vol. 49, pp. 49–67, 1989. View at Publisher · View at Google Scholar
  116. J. C. Groen, J. A. Moulijn, and J. Pérez-Ramirez, “Desilication: on the controlled generation of mesoporosity in MFI zeolites,” Journal of Materials Chemistry, vol. 16, no. 22, pp. 2121–2131, 2006. View at Publisher · View at Google Scholar
  117. D. Verboekend and J. Perez-Ramirez, “Design of hierarchical zeolite catalysts by desilication,” Catal. Science & Tecnology, vol. 1, no. 6, pp. 879–890, 2011. View at Publisher · View at Google Scholar
  118. J. C. Groen, L. A. A. Peffer, J. A. Moulijn, and J. Pérez-Ramírez, “Mesoporosity development in ZSM-5 zeolite upon optimized desilication conditions in alkaline medium,” Colloids and Surfaces A, vol. 24, no. 1–3, pp. 53–58, 2004. View at Publisher · View at Google Scholar
  119. J. C. Groen, R. Caicedo-Realpe, S. Abelló, and J. Pérez-Ramirez, “Mesoporous metallosilicate zeolites by desilication: on the generic pore-inducing role of framework trivalent heteroatoms,” Materials Letters, vol. 63, no. 12, pp. 1037–1040, 2009. View at Publisher · View at Google Scholar
  120. Y. Tao, H. Kanoh, and K. Kaneko, “Developments and structures of mesopores in alkaline-treated ZSM-5 zeolites,” Adsorption, vol. 12, no. 5-6, pp. 309–316, 2006. View at Publisher · View at Google Scholar · View at Scopus
  121. M. M. Otten, M. J. Clayton, and H. H. Lamb, “Platinum-mordenite catalysts for n-hexane isomerization: characterization by X-Ray absorption spectroscopy and chemical probes,” Journal of Catalysis, vol. 149, no. 1, pp. 211–222, 1994. View at Publisher · View at Google Scholar
  122. B. T. Carvill, B. A. Lerner, B. J. Adelman, D. C. Tomazack, and V. M. W. Sachtler, “Increased catalytic activity caused by local destruction of linear zeolite channels: effect of reduction temperature on heptane conversion over platinum supported in H-mordenite,” Journal of Catalysis, vol. 144, no. 1, pp. 1–8, 1993. View at Publisher · View at Google Scholar
  123. M. S. Holm, E. Taarning, K. Egeblad, and C. H. Christensen, “Catalysis with hierarchical zeolites,” Catalysis Today, vol. 168, no. 1, pp. 3–16, 2011. View at Publisher · View at Google Scholar · View at Scopus
  124. D. H. Park, S. S. Kim, H. Wang et al., “Selective petroleum refining over a zeolite catalyst with small intracrystal mesopores,” Angewandte Chemie, vol. 48, no. 41, pp. 7645–7648, 2009. View at Publisher · View at Google Scholar · View at Scopus
  125. H. J. Park, K. H. Park, J. K. Jeon et al., “Production of phenolics and aromatics by pyrolysis of miscanthus,” Fuel, vol. 97, pp. 379–384, 2012. View at Publisher · View at Google Scholar
  126. A. J. Foster, J. Jae, Y. T. Cheng, G. W. Huber, and R. F. Lobo, “Optimizing the aromatic yield and distribution from catalytic fast pyrolysis of biomass over ZSM-5,” Applied Catalysis A, vol. 423-424, pp. 154–161, 2012. View at Google Scholar
  127. G. T. Neumann and J. C. Hicks, “Novel hierarchical cerium-incorporated MFI zeolite catalysts for the catalytic fast pyrolysis of lignocellulosic biomass,” ACS Catalysis, vol. 2, no. 4, pp. 642–646, 2012. View at Publisher · View at Google Scholar
  128. M. J. Jeon, S. S. Kim, K. J. Jeon et al., “Catalytic pyrolysis of waste rice husk over mesoporous materials,” Nanoscale Research Letters, vol. 7, article 18, 2012. View at Google Scholar
  129. V. Paixao, A. P. Carvalho, J. Rocha, A. Fernandes, and A. Martins, “Modification of MOR by desilication treatments: structural, textural and acidic characterization,” Micro and Mesoporous Materials, vol. 131, no. 1–3, pp. 350–357, 2010. View at Publisher · View at Google Scholar
  130. J. F. da Costa Serra, M. T. Navarro, F. Rey, and A. Chica, “Bioethanol steam reforming on Ni-based modified mordenite. Effect of mesoporosity, acid sites and alkaline metals,” International Journal of Hydrogen Energy, vol. 37, no. 8, pp. 7101–7108, 2012. View at Publisher · View at Google Scholar
  131. R. D. Cortright, R. R. Davda, and J. A. Dumesic, “Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water,” Nature, vol. 418, no. 6901, pp. 964–967, 2002. View at Publisher · View at Google Scholar · View at Scopus
  132. R. R. Davda, J. W. Shabaker, G. W. Huber, R. D. Cortright, and J. A. Dumesic, “A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts,” Applied Catalysis B, vol. 56, no. 1-2, pp. 171–186, 2005. View at Publisher · View at Google Scholar · View at Scopus
  133. G. W. Huber and J. A. Dumesic, “An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery,” Catalysis Today, vol. 111, no. 1-2, pp. 119–132, 2006. View at Publisher · View at Google Scholar · View at Scopus
  134. Z. Tang, J. Monroe, J. Dong, T. Nenoff, and D. Weinkauf, “Platinum-loaded NaY zeolite for aqueous-phase reforming of methanol and ethanol to hydrogen,” Industrial and Engineering Chemistry Research, vol. 48, no. 5, pp. 2728–2733, 2009. View at Publisher · View at Google Scholar · View at Scopus
  135. N. S. Lewis and D. G. Nocera, “Powering the planet: chemical challenges in solar energy utilization,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 43, pp. 15729–15735, 2006. View at Publisher · View at Google Scholar · View at Scopus
  136. X. Chen, S. Shen, L. Guo, and S. S. Mao, “Semiconductor-based photocatalytic hydrogen generation,” Chemical Reviews, vol. 110, no. 11, pp. 6503–6570, 2010. View at Publisher · View at Google Scholar
  137. A. Kudo and Y. Miseki, “Heterogeneous photocatalyst materials for water splitting,” Chemical Society Reviews, vol. 38, no. 1, pp. 253–278, 2009. View at Publisher · View at Google Scholar · View at Scopus
  138. A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature, vol. 238, no. 5358, pp. 37–38, 1972. View at Publisher · View at Google Scholar · View at Scopus
  139. A. Kudo, H. Kato, and I. Tsuji, “Strategies for the development of visible-light-driven photocatalysts for water splitting,” Chemistry Letters, vol. 33, no. 12, pp. 1534–1539, 2004. View at Publisher · View at Google Scholar · View at Scopus
  140. K. Domen, S. Naito, T. Onishi, and K. Tamaru, “Photocatalytic decomposition of liquid water on a NiOSrTiO3 catalyst,” Chemical Physics Letters, vol. 92, no. 4, pp. 433–434, 1982. View at Google Scholar · View at Scopus
  141. Y. Inoue, T. Kubokawa, and K. Sato, “Photocatalytic activity of sodium hexatitanate, Na2Ti6O13, with a tunnel structure for decomposition of water,” Journal of the Chemical Society, Chemical Communications, no. 19, pp. 1298–1299, 1990. View at Google Scholar
  142. T. Takata, Y. Furumi, K. Shinohara et al., “Photocatalytic decomposition of water on spontaneously hydrated layered perovskites,” Chemistry of Materials, vol. 9, no. 5, pp. 1063–1064, 1997. View at Google Scholar · View at Scopus
  143. A. Kudo, K. Sayama, A. Tanaka et al., “Nickel-loaded K4Nb6O17 photocatalyst in the decomposition of H2O into H2 and O2: structure and reaction mechanism,” Journal of Catalysis, vol. 120, no. 2, pp. 337–352, 1989. View at Google Scholar · View at Scopus
  144. K. Sayama, A. Tanaka, K. Domen, K. Maruya, and T. Onishi, “Photocatalytic decomposition of water over platinum-intercalated K4Nb6O17,” Journal of Physical Chemistry, vol. 95, no. 3, pp. 1345–1348, 1991. View at Google Scholar · View at Scopus
  145. A. Kudo and H. Kato, “Photocatalytic decomposition of water into H2 and O2 over novel photocatalyst K3Ta3Si2O13 with pillared structure consisting of three TaO6 chains,” Chemistry Letters, vol. 26, no. 9, pp. 867–868, 1997. View at Publisher · View at Google Scholar
  146. T. Ishihara, H. Nishiguchi, K. Fukamachi, and Y. Takita, “Effects of acceptor doping to KTaO3 on photocatalytic decomposition of pure H2O,” Journal of Physical Chemistry B, vol. 103, no. 1, pp. 1–3, 1999. View at Google Scholar · View at Scopus
  147. A. Kudo, H. Kato, and S. Nakagawa, “Water splitting into H2 and O2 on New Sr2M2O7 (M = Nb and Ta) photocatalysts with layered perovskite structures: factors affecting the photocatalytic activity,” The Journal of Physical Chemistry B, vol. 104, no. 3, pp. 571–575, 2000. View at Publisher · View at Google Scholar
  148. H. Kato and A. Kudo, “Water splitting into H2 and O2 on alkali tantalate photocatalysts ATaO3 (A = Li, Na, and K),” The Journal of Physical Chemistry B, vol. 105, no. 19, pp. 4285–4292, 2001. View at Publisher · View at Google Scholar
  149. A. Kudo, K. Asakura, and H. Kato, “Highly eficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure,” Journal of the American Chemical Society, vol. 125, no. 10, pp. 3082–3089, 2003. View at Publisher · View at Google Scholar
  150. Z. Zou, J. Ye, K. Sayama, and H. Arakawa, “Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst,” Nature, vol. 414, no. 6864, pp. 625–627, 2001. View at Publisher · View at Google Scholar · View at Scopus
  151. M. Machida, J. I. Yabunaka, and T. Kijima, “Synthesis and photocatalytic property of layered perovskite tantalates, RbLnTa2O7 (Ln = La, Pr, Nd, and Sm),” Chemistry of Materials, vol. 12, no. 3, pp. 812–817, 2000. View at Publisher · View at Google Scholar · View at Scopus
  152. H. Kato and A. Kudo, “Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium,” The Journal of Physical Chemistry B, vol. 106, no. 19, pp. 5029–5034, 2002. View at Publisher · View at Google Scholar
  153. T. Ishii, H. Kato, and A. Kudo, “H2 evolution from an aqueous methanol solution on SrTiO3 photocatalysts codoped with chromium and tantalum ions under visible light irradiation,” Journal of Photochemistry and Photobiology A, vol. 163, no. 1-2, pp. 181–186, 2004. View at Publisher · View at Google Scholar
  154. I. Tsuji, H. Kato, H. Kobayashi, and A. Kudo, “Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)xZn2(1-x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures,” Journal of the American Chemical Society, vol. 126, no. 41, pp. 13406–13413, 2004. View at Publisher · View at Google Scholar
  155. I. Tsuji, H. Kato, and A. Kudo, “Photocatalytic hydrogen evolution on ZnS−CuInS2−AgInS2 solid solution photocatalysts with wide visible light absorption bands,” Chemistry of Materials, vol. 18, no. 7, pp. 1969–1975, 2006. View at Publisher · View at Google Scholar
  156. D. Yamasita, T. Takata, M. Hara, J. N. Kondo, and K. Domen, “Recent progress of visible-light-driven heterogeneous photocatalysts for overall water splitting,” Solid State Ionics, vol. 172, no. 1–4, pp. 591–595, 2004. View at Publisher · View at Google Scholar · View at Scopus
  157. R. Niishiro, H. Kato, and A. Kudo, “Nickel and either tantalum or niobium-codoped TiO2 and SrTiO3 photocatalysts with visible-light response for H2 or O2 evolution from aqueous solutions,” Physical Chemistry Chemical Physics, vol. 7, no. 10, pp. 2241–2245, 2005. View at Publisher · View at Google Scholar
  158. I. Tsuji and A. Kudo, “H2 evolution from aqueous sulfite solutions under visible-light irradiation over Pb and halogen-codoped ZnS photocatalysts,” Journal of Photochemistry and Photobiology A, vol. 156, no. 1–3, pp. 249–252, 2003. View at Publisher · View at Google Scholar
  159. O. Diwald, T. L. Thompson, E. G. Goralski, S. D. Walck, and J. T. Yates, “The effect of nitrogen ion implantation on the photoactivity of TiO2 rutile single crystals,” Journal of Physical Chemistry B, vol. 108, no. 1, pp. 52–57, 2004. View at Google Scholar · View at Scopus
  160. R. Konta, T. Ishii, H. Kato, and A. Kudo, “Photocatalytic activities of noble metal ion doped SrTiO3 under visible light irradiation,” Journal of Physical Chemistry B, vol. 108, no. 26, pp. 8992–8995, 2004. View at Publisher · View at Google Scholar · View at Scopus
  161. I. Tsuji, H. Kato, and A. Kudo, “Visible-light-induced H2 evolution from an aqueous solution containing sulfide and sulfite over a ZnS-CuInS2-AgInS2 solid-solution photocatalyst,” Angewandte Chemie, vol. 44, no. 23, pp. 3565–3568, 2005. View at Publisher · View at Google Scholar
  162. T. L. Thompson and J. T. Yates, “Surface science studies of the photoactivation of TiO2 new photochemical processes,” Chemical Reviews, vol. 106, no. 10, pp. 4428–4453, 2006. View at Publisher · View at Google Scholar
  163. J. L. Gole, J. D. Stout, C. Burda, Y. Lou, and X. Chen, “Highly efficient formation of visible light tunable TiO2-xNx photocatalysts and their transformation at the nanoscale,” Journal of Physical Chemistry B, vol. 108, no. 4, pp. 1230–1240, 2004. View at Google Scholar · View at Scopus
  164. C. Di Valentin, G. Pacchioni, and A. Selloni, “Origin of the different photoactivity of N-doped anatase and rutile TiO2,” Physical Review B, vol. 70, Article ID 18202, 4 pages, 2004. View at Publisher · View at Google Scholar
  165. G. Hitoki, A. Ishikawa, T. Takata, J. N. Kondo, M. Hara, and K. Domen, “Ta3N5 as a novel visible light-driven photocatalyst (λ < 600 nm),” Chemistry Letters, no. 7, pp. 736–737, 2002. View at Google Scholar · View at Scopus
  166. A. Kasahara, K. Nukumizu, G. Hitoki et al., “Photoreactions on LaTiO2N under visible light irradiation,” Journal of Physical Chemistry A, vol. 106, no. 29, pp. 6750–6753, 2002. View at Publisher · View at Google Scholar · View at Scopus
  167. H. Kato, K. Asakura, and A. Kudo, “Highly efficient water splitting into H2 and O2 over Lanthanum-Doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure,” Journal of the American Chemical Society, vol. 125, no. 10, pp. 3082–3089, 2003. View at Publisher · View at Google Scholar
  168. W. Shangguan and A. Yoshida, “Photocatalytic hydrogen evolution from water on nanocomposites incorporating cadmium sulfide into the interlayer,” Journal of Physical Chemistry B, vol. 106, no. 47, pp. 12227–12230, 2002. View at Publisher · View at Google Scholar · View at Scopus
  169. A. Koca and M. Sahin, “Photocatalytic hydrogen production by direct sun light from sulfide/sulfite solution,” International Journal of Hydrogen Energy, vol. 27, no. 4, pp. 363–367, 2002. View at Publisher · View at Google Scholar
  170. G. Milczarek, A. Kasuya, S. Mamykin, T. Arai, K. Shinoda, and K. Tohji, “Optimization of a two-compartment photoelectrochemical cell for solar hydrogen production,” International Journal of Hydrogen Energy, vol. 28, no. 9, pp. 919–926, 2003. View at Publisher · View at Google Scholar · View at Scopus
  171. J. R. Plunkett and United States, Energy Information Administration, International Energy Outlook and Projections, Nova Science, Hauppauge, NY, USA, 2011.
  172. A. Kudo and Y. Miseki, “Heterogeneous photocatalyst materials for water splitting,” Chemical Society Reviews, vol. 38, no. 1, pp. 253–278, 2009. View at Publisher · View at Google Scholar · View at Scopus
  173. M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, “A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production,” Renewable and Sustainable Energy Reviews, vol. 11, no. 3, pp. 401–425, 2007. View at Publisher · View at Google Scholar · View at Scopus
  174. M. Matsuoka, M. Kitano, M. Takeuchi, K. Tsujimaru, M. Anpo, and J. M. Thomas, “Photocatalysis for new energy production. Recent advances in photocatalytic water splitting reactions for hydrogen production,” Catalysis Today, vol. 122, no. 1-2, pp. 51–61, 2007. View at Publisher · View at Google Scholar · View at Scopus
  175. T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, “Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects,” International Journal of Hydrogen Energy, vol. 27, no. 10, pp. 991–1022, 2002. View at Publisher · View at Google Scholar · View at Scopus
  176. Y. A. Shaban and S. U. M. Khan, “Visible light active carbon modified n-TiO2 for efficient hydrogen production by photoelectrochemical splitting of water,” International Journal of Hydrogen Energy, vol. 33, no. 4, pp. 1118–1126, 2008. View at Publisher · View at Google Scholar
  177. H. Y. Lin, T. H. Lee, and C. Y. Sie, “Photocatalytic hydrogen production with nickel oxide intercalated K4Nb6O17 under visible light irradiation,” International Journal of Hydrogen Energy, vol. 33, no. 15, pp. 4055–4063, 2008. View at Publisher · View at Google Scholar · View at Scopus
  178. H. Y. Lin, Y. F. Chen, and Y. W. Chen, “Water splitting reaction on NiO/InVO4 under visible light irradiation,” International Journal of Hydrogen Energy, vol. 32, no. 1, pp. 86–92, 2007. View at Publisher · View at Google Scholar
  179. P. S. Lunawat, S. Senapati, R. Kumar, and N. M. Gupta, “Visible light-induced splitting of water using CdS nanocrystallites immobilized over water-repellant polymeric surface,” International Journal of Hydrogen Energy, vol. 32, no. 14, pp. 2784–2790, 2007. View at Publisher · View at Google Scholar · View at Scopus
  180. M. Sathish, B. Viswanathan, and R. P. Viswanath, “Alternate synthetic strategy for the preparation of CdS nanoparticles and its exploitation for water splitting,” International Journal of Hydrogen Energy, vol. 31, no. 7, pp. 891–898, 2006. View at Publisher · View at Google Scholar · View at Scopus
  181. N. Koriche, A. Bouguelia, A. Aider, and M. Trari, “Photocatalytic hydrogen evolution over delafossite CuAlO2,” International Journal of Hydrogen Energy, vol. 30, no. 7, pp. 693–699, 2005. View at Publisher · View at Google Scholar · View at Scopus
  182. J. Ye, Z. Zou, and A. Matsushita, “A novel series of water splitting photocatalysts NiM2O6 (M = Nb, Ta) active under visible light,” International Journal of Hydrogen Energy, vol. 28, no. 6, pp. 651–655, 2003. View at Publisher · View at Google Scholar · View at Scopus
  183. Y. Bessekhouad and M. Trari, “Photocatalytic hydrogen production from suspension of spinel powders AMn2O4(A = Cu and Zn),” International Journal of Hydrogen Energy, vol. 27, no. 4, pp. 357–362, 2002. View at Publisher · View at Google Scholar · View at Scopus
  184. P. K. Dutta and W. Turbeville, “Intrazeolitic photoinduced redox reactions between Ru(bpy)32+ and methylviologen,” Journal of Physical Chemistry, vol. 96, no. 23, pp. 9410–9416, 1992. View at Google Scholar · View at Scopus
  185. H. Yamashita, Y. Fujii, Y. Ichihashi et al., “Selective formation of CH3OH in the photocatalytic reduction of CO2 with H2O on titanium oxides highly dispersed within zeolites and mesoporous molecular sieves,” Catalysis Today, vol. 45, no. 1–4, pp. 221–227, 1998. View at Google Scholar · View at Scopus
  186. M. Anpo, H. Yamashita, Y. Ichihashi, Y. Fujii, and M. Honda, “Photocatalytic reduction of CO2 with H2O on titanium oxides anchored within micropores of zeolites: effects of the structure of the active sites and the addition of Pt,” Journal of Physical Chemistry B, vol. 101, no. 14, pp. 2632–2636, 1997. View at Google Scholar · View at Scopus
  187. S. G. Zhang, Y. Fujii, H. Yamashita, K. Koyano, T. Tatsumi, and M. Anpo, “Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolites at 328 K,” Chemistry Letters, no. 7, pp. 659–660, 1997. View at Google Scholar · View at Scopus
  188. M. Anpo, M. Matsuoka, Y. Shioya et al., “Preparation and characterization of the Cu+/ZSM-5 catalyst and its reaction with NO under UV irradiation at 275 K. In situ photoluminescence, EPR, and FT-IR investigations,” Journal of Physical Chemistry, vol. 98, no. 22, pp. 5744–5750, 1994. View at Google Scholar · View at Scopus
  189. M. Anpo and H. Yamashita, “Photochemistry of surface species anchored on solid surfaces,” in Surface Photochemistry, M. Anpo, Ed., p. 117, Wiley, London, UK, 1996. View at Google Scholar
  190. H. Yamashita, Y. Ichihashi, M. Anpo, M. Hashimoto, C. Louis, and M. Che, “Photocatalytic decomposition of NO at 275 K on titanium oxides included within Y-zeolite cavities: the structure and role of the active sites,” The Journal of Physical Chemistry, vol. 100, no. 40, pp. 16041–16044, 1996. View at Google Scholar · View at Scopus
  191. H. Chen, A. Matsumoto, N. Nishimiya, and K. Tsutsumi, “Preparation and characterization of TiO2 incorporated Y-zeolite,” Colloids and Surfaces A, vol. 157, no. 1–3, pp. 295–305, 1999. View at Publisher · View at Google Scholar · View at Scopus
  192. X. Liu, K. K. Lu, and J. K. Thomas, “Encapsulation of TiO2 in zeolite Y,” Chemical Physics Letters, vol. 195, no. 2-3, pp. 163–168, 1992. View at Publisher · View at Google Scholar
  193. X. Liu, K. K. Lu, and J. K. Thomas, “Preparation, characterization and photoreactivity of titanium(IV) oxide encapsulated in zeolites,” Journal of the Chemical Society, vol. 89, pp. 1861–1865, 1993. View at Publisher · View at Google Scholar
  194. Y. Kim and M. Yoon, “TiO2/Y-Zeolite encapsulating intramolecular charge transfer molecules: a new photocatalyst for photoreduction of methyl orange in aqueous medium,” Journal of Molecular Catalysis A, vol. 168, no. 1-2, pp. 257–263, 2000. View at Publisher · View at Google Scholar
  195. X. Chen and S. S. Mao, “Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications,” Chemical Reviews, vol. 107, no. 7, pp. 2891–2959, 2007. View at Publisher · View at Google Scholar
  196. S. Ikeda, A. Tanaka, K. Shinohara et al., “Effect of the particle size for photocatalytic decomposition of water on Ni-loaded K4Nb4O17,” Microporous Materials, vol. 9, no. 5-6, pp. 253–258, 1997. View at Google Scholar · View at Scopus
  197. M. C. Hidalgo, M. Aguilar, M. Maicu, J. A. Navío, and G. Colón, “Hydrothermal preparation of highly photoactive TiO2 nanoparticles,” Catalysis Today, vol. 129, no. 1-2, pp. 50–58, 2007. View at Publisher · View at Google Scholar
  198. A. Testino, I. R. Bellobono, V. Buscaglia et al., “Optimizing the photocatalytic properties of hydrothermal TiO2 by the control of phase composition and particle morphology. A systematic approach,” Journal of the American Chemical Society, vol. 129, no. 12, pp. 3564–3575, 2007. View at Publisher · View at Google Scholar · View at Scopus
  199. A. Datta, A. Priyam, S. N. Bhattacharyya, K. K. Mukherjea, and A. Saha, “Temperature tunability of size in CdS nanoparticles and size dependent photocatalytic degradation of nitroaromatics,” Journal of Colloid and Interface Science, vol. 322, no. 1, pp. 128–135, 2008. View at Publisher · View at Google Scholar · View at Scopus
  200. S. Y. Chae, M. K. Park, S. K. Lee, T. Y. Kim, S. K. Kim, and W. I. Lee, “Preparation of size-controlled TiO2 nanoparticles and derivation of optically transparent photocatalytic films,” Chemistry of Materials, vol. 15, no. 17, pp. 3326–3331, 2003. View at Publisher · View at Google Scholar · View at Scopus
  201. G. Liu, C. Sun, H. G. Yang et al., “Nanosized anatase TiO2 single crystals for enhanced photocatalytic activity,” Chemical Communications, vol. 46, no. 5, pp. 755–757, 2010. View at Publisher · View at Google Scholar
  202. Y. Lee, T. Watanabe, T. Takata, M. Hara, M. Yoshimura, and K. Domen, “Hydrothermal synthesis of fine NaTaO3 powder as a highly efficient photocatalyst for overall water splitting,” Bulletin of the Chemical Society of Japan, vol. 80, no. 2, pp. 423–428, 2007. View at Publisher · View at Google Scholar
  203. Z. Zhang, C. C. Wang, R. Zakaria, and J. Y. Ying, “Role of particle size in nanocrystalline TiOi-based photocatalysts,” Journal of Physical Chemistry B, vol. 102, no. 52, pp. 10871–10878, 1998. View at Google Scholar · View at Scopus
  204. W. Sun, S. Zhang, Z. Liu, C. Wang, and Z. Mao, “Studies on the enhanced photocatalytic hydrogen evolution over Pt/PEG-modified TiO2 photocatalysts,” International Journal of Hydrogen Energy, vol. 33, no. 4, pp. 1112–1117, 2008. View at Publisher · View at Google Scholar · View at Scopus
  205. D. W. Bahnemann, C. Kormann, and M. R. Hoffmann, “Preparation and characterization of quantum size zinc oxide: a detailed spectroscopic study,” Journal of Physical Chemistry, vol. 91, no. 14, pp. 3789–3798, 1987. View at Google Scholar · View at Scopus
  206. A. J. Hoffman, E. R. Carraway, and M. R. Hoffmann, “Photocatalytic production of H2O2 and organic peroxides on quantum-sized semiconductor colloids,” Environmental Science & Technology, vol. 28, no. 5, pp. 776–785, 1994. View at Publisher · View at Google Scholar
  207. A. J. Hoffman, G. Mills, H. Yee, and M. R. Hoffmann, “Q-sized cadmium sulfide: synthesis, characterization, and efficiency of photoinitiation of polymerization of several vinylic monomers,” The Journal of Physical Chemistry, vol. 96, no. 13, pp. 5546–5552, 1992. View at Publisher · View at Google Scholar
  208. A. J. Hoffman, H. Yee, G. Mills, and M. R. Hoffmann, “Q-sized cadmium sulfide: synthesis, characterization, and efficiency of photoinitiation of polymerization of several vinylic monomers,” The Journal of Physical Chemistry, vol. 96, no. 13, pp. 5540–5552, 1992. View at Publisher · View at Google Scholar
  209. M. A. Fox and T. L. Pettit, “Photoactivity of zeolite-supported cadmium sulfide: hydrogen evolution in the presence of sacrificial donors,” Langmuir, vol. 5, no. 4, pp. 1056–1061, 1989. View at Google Scholar · View at Scopus
  210. M. Warrier, M. K. F. Lo, H. Monbouquette, and M. A. Garcia-Garibay, “Photocatalytic reduction of aromatic azides to amines using CdS and CdSe nanoparticles,” Photochemical and Photobiological Sciences, vol. 3, no. 9, pp. 859–863, 2004. View at Publisher · View at Google Scholar · View at Scopus
  211. M. Sathish, B. Vishwanathan, and R. P. Vishwanath, “Alternate synthetic strategy for the preparation of CdS nanoparticles and its exploitation for water splitting,” International Journal of Hydrogen Energy, vol. 31, no. 7, pp. 891–898, 2006. View at Publisher · View at Google Scholar
  212. S. Y. Ryu, W. Balcerski, T. K. Lee, and M. R. Hoffmann, “Photocatalytic production of hydrogen from water with visible light using hybrid catalysts of CdS attached to microporous and mesoporous silicas,” Journal of Physical Chemistry C, vol. 111, no. 49, pp. 18195–18203, 2007. View at Publisher · View at Google Scholar · View at Scopus
  213. S. Y. Ryu, J. Choi, W. Balcerski, T. K. Lee, and M. R. Hoffmann, “Photocatalytic production of H2 on nanocomposite catalysts,” Industrial and Engineering Chemistry Research, vol. 46, no. 23, pp. 7476–7488, 2007. View at Publisher · View at Google Scholar · View at Scopus
  214. P. Yue and F. Khan, “Methods for increasing photo-assisted production of hydrogen over titanium exchanged zeolites,” International Journal of Hydrogen Energy, vol. 16, no. 9, pp. 609–613, 1991. View at Google Scholar · View at Scopus
  215. G. Guan, T. Kida, K. Kusakabe, K. Kimura, X. Fang, and T. Ma, “Photocatalytic H2 evolution under visible light irradiation on CdS/ETS-4 composite,” Chemical Physics Letters, vol. 385, no. 3-4, pp. 319–322, 2004. View at Publisher · View at Google Scholar
  216. G. Guan, T. Kida, K. Kusakabe et al., “Photocatalytic H2 evolution under visible light irradiation on CdS/ETS-4 composite,” Chemical Physics Letters, vol. 385, no. 3-4, pp. 319–322, 2004. View at Publisher · View at Google Scholar · View at Scopus
  217. N. Dubey, S. S. Rayalu, N. K. Labhsetwar, and S. Devotta, “Visible light active zeolite-based photocatalysts for hydrogen evolution from water,” International Journal of Hydrogen Energy, vol. 33, no. 21, pp. 5958–5966, 2008. View at Publisher · View at Google Scholar · View at Scopus
  218. J. C. White and P. K. Dutta, “Assembly of nanoparticles in zeolite Y for the photocatalytic generation of hydrogen from water,” The Journal of Physical Chemistry C, vol. 115, no. 7, pp. 2938–2947, 2011. View at Publisher · View at Google Scholar