Table of Contents Author Guidelines Submit a Manuscript
ISRN Biochemistry
Volume 2013 (2013), Article ID 910308, 10 pages
Research Article

Evaluation of the In Vitro Efficacy of Artemisia annua, Rumex abyssinicus, and Catha edulis Forsk Extracts in Cancer and Trypanosoma brucei Cells

1Institute of Biochemistry, Faculty of Medicine, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany
2Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, P.O. Box 198, Gondar, Ethiopia
3Physiology Department, Medical Faculty, Jimma University, P.O. Box 378, Jimma, Ethiopia
4Department of Tropical Medicine, Medical Mission Institute, Salvatorstrasse 7, 97067 Würzburg, Germany
5Department of Veterinary Parasitology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 35, 04103 Leipzig, Germany
6Department of Zoology, Faculty of Science, University of Alexandria, Maharram Bey, Alexandria 21511, Egypt

Received 29 May 2013; Accepted 13 August 2013

Academic Editors: S.-P. Scott and N. Sergeant

Copyright © 2013 Netsanet Worku et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The current drugs against sleeping sickness are derived from cancer chemotherapeutic approaches. Herein, we aimed at evaluating the in vitro effect of alcoholic extracts of Artemisia annua (AMR), Rumex abyssinicus (RMA), and Catha edulis Forsk (CEF) on proliferation/viability of 1321N1 astrocytoma, MCF-7 breast cancer, THP-1 leukemia, and LNCaP, Du-145, and PC-3 prostate cancer cells and on Trypanosoma brucei cells. Proliferation of tumor cells was evaluated by WST-1 assay and viability/behaviour of T. brucei by cell counting and light microscopy. CEF was the most efficient growth inhibitor in comparison to AMR and RMA. Nevertheless, in LNCaP and THP-1 cells, all extracts significantly inhibited tumor growth at 3 μg/mL. All extracts inhibited proliferation of T. brucei cells in a concentration-dependent manner. Microscopic analysis revealed that 95% of the T. brucei cells died when exposed to 33 μg/mL CEF for 3 hrs. Similar results were obtained using 33 μg/mL AMR for 6 hrs. In case of RMA, however, higher concentrations were necessary to obtain similar effects on T. brucei. This demonstrates the antitumor efficacy of these extracts as well as their ability to dampen viability and proliferation of T. brucei, suggesting a common mechanism of action on highly proliferative cells, most probably by targeting cell metabolism.