Table of Contents
ISRN Oncology
Volume 2013 (2013), Article ID 910849, 8 pages
http://dx.doi.org/10.1155/2013/910849
Research Article

Chromosome Aberrations in Cells Infected with Bovine Papillomavirus: Comparing Cutaneous Papilloma, Esophagus Papilloma, and Urinary Bladder Lesion Cells

1Laboratório de Genética, Instituto Butantan, Avenida Vital Brasil, 1500, Butantã, 05503-900 São Paulo, SP, Brazil
2Programa de Pós-graduação em Biologia Estrutural e Funcional, Universidade Federal de São Paulo, Rua Botucatu, 740, 04023-900 São Paulo, SP, Brazil
3Programa de Pós-graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Avenida Prof. Lineu Prestes, 2415 Edifício ICB-III-Cidade Universitária, 05508-900 São Paulo, SP, Brazil
4Department of Biology, Naples University Federico II, Via Mezzocannone 16, 80134 Naples, Italy
5Departamento de Biologia, Universidade Federal da Integração Latino-Americana (UNILA), Avenida Tancredo Neves, 6731 bloco 4, 85867-970 Foz do Iguaçú, PR, Brazil

Received 3 June 2013; Accepted 2 July 2013

Academic Editors: K. Sonoda, M. Stracke, and K. van Golen

Copyright © 2013 S. R. C. Campos et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Borzacchiello and F. Roperto, “Bovine papillomaviruses, papillomas and cancer in cattle,” Veterinary Research, vol. 39, no. 5, article 45, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. M. S. Campo, “Bovine papillomavirus and cancer,” Veterinary Journal, vol. 154, no. 3, pp. 175–188, 1997. View at Google Scholar · View at Scopus
  3. S. Duensing and K. Münger, “The human papillomavirus type 16 E6 and E7 oncoproteins independently induce numerical and structural chromosome instability,” Cancer Research, vol. 62, no. 23, pp. 7075–7082, 2002. View at Google Scholar · View at Scopus
  4. S. Duensing, L. Y. Lee, A. Duensing et al., “The human papillomavirus type 16 E6 and E7 oncoproteins cooperate to induce mitotic defects and genomic instability by uncoupling centrosome duplication from the cell division cycle,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 18, pp. 10002–10007, 2000. View at Google Scholar · View at Scopus
  5. M. Kadaja, H. Isok-Paas, T. Laos, E. Ustav, and M. Ustav, “Mechanism of genomic instability in cells infected with the high-risk human papillomaviruses,” PLoS Pathogens, vol. 5, no. 4, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. N. A. Hamid, C. Brown, and K. Gaston, “The regulation of cell proliferation by the papillomavirus early proteins,” Cellular and Molecular Life Sciences, vol. 66, no. 10, pp. 1700–1717, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. V. Kashyap and B. C. Das, “DNA aneuploidy and infection of human papillomavirus type 16 in preneoplastic lesions of the uterine cervix: correlation with progression to malignancy,” Cancer Letters, vol. 123, no. 1, pp. 47–52, 1998. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Patel, A. Incassati, N. Wang, and D. J. McCance, “Human papillomavirus type 16 E6 and E7 cause polyploidy in human keratinocytes and up-regulation of G2-M-phase proteins,” Cancer Research, vol. 64, no. 4, pp. 1299–1306, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Boulet, C. Horvath, D. V. Broeck, S. Sahebali, and J. Bogers, “Human papillomavirus: E6 and E7 oncogenes,” International Journal of Biochemistry and Cell Biology, vol. 39, no. 11, pp. 2006–2011, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. V. O'Brien, G. J. Grindlay, and M. S. Campo, “Cell transformation by the E5/E8 protein of bovine papillomavirus type 4. p27Kip1, elevated through increased protein synthesis, is sequestered by cyclin D1-CDK4 complexes,” Journal of Biological Chemistry, vol. 276, no. 36, pp. 33861–33868, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. A. A. McBride, J. G. Oliveira, and M. G. McPhillips, “Partitioning viral genomes in mitosis: same idea, different targets,” Cell Cycle, vol. 5, no. 14, pp. 1499–1502, 2006. View at Google Scholar · View at Scopus
  12. J. G. Oliveira, L. A. Colf, and A. A. McBride, “Variations in the association of papillomavirus E2 proteins with mitotic chromosomes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 4, pp. 1047–1052, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Duensing and K. Münger, “Human papillomaviruses and centrosome duplication errors: modeling the origins of genomic instability,” Oncogene, vol. 21, no. 40, pp. 6241–6248, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. R. C. Recouso, R. C. Stocco dos Santos, R. Freitas et al., “Clastogenic effect of bracken fern (Pteridium aquilinum aracnoideum) diet in peripheral lymphocytes of human consumers: preliminary data,” Veterinary and Comparative Oncology, vol. 1, no. 1, pp. 22–29, 2003. View at Google Scholar
  15. R. C. Stocco Dos Santos, C. J. Lindsey, O. P. Ferraz et al., “Bovine papillomavirus transmission and chromosomal aberrations: an experimental model,” Journal of General Virology, vol. 79, no. 9, pp. 2127–2135, 1998. View at Google Scholar · View at Scopus
  16. A. C. De Freitas, C. De Carvalho, O. Brunner et al., “Viral DNA sequences in peripheral blood and vertical transmission of the virus: a discussion about BPV-1,” Brazilian Journal of Microbiology, vol. 34, no. 1, pp. 76–78, 2003. View at Google Scholar · View at Scopus
  17. C. J. Lindsey, M. E. Almeida, C. F. Vicari et al., “Bovine papillomavirus DNA in milk, blood, urine, semen, and spermatozoa of bovine papillomavirus-infected animals,” Genetics and Molecular Research, vol. 8, no. 1, pp. 310–318, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Roperto, R. Brun, F. Paolini et al., “Detection of bovine papillomavirus type 2 in the peripheral blood of cattle with urinary bladder tumours: possible biological role,” Journal of General Virology, vol. 89, no. 12, pp. 3027–3033, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. T. C. Melo, N. Diniz, S. R. C. Campos et al., “Cytogenetic studies in peripheral blood of bovines afflicted by papillomatosis,” Veterinary and Comparative Oncology, vol. 9, no. 4, pp. 269–274, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. J. W. Moura, R. C. Stocco Dos Santos, M. L. Z. Dagli, J. L. D'Angelino, E. H. Birgel, and W. Becak, “Chromosome aberrations in cattle raised on bracken fern pasture,” Experientia, vol. 44, no. 9, pp. 785–788, 1988. View at Google Scholar · View at Scopus
  21. M. B. Lioi, R. Barbieri, G. Borzacchiello et al., “Chromosome aberrations in cattle with chronic enzootic haematuria,” Journal of Comparative Pathology, vol. 131, no. 2-3, pp. 233–236, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. C. De Carvalho, A. C. De Freitas, O. Brunner et al., “Bovine papillomavirus type 2 in reproductive tract and gametes of slaughtered bovine females,” Brazilian Journal of Microbiology, vol. 34, no. 1, pp. 82–84, 2003. View at Google Scholar · View at Scopus
  23. A. Yaguiu, C. Carvalho, A. C. Freitas et al., “Papilomatosis in cattle: in situ detection of bovine papillomavirus DNA sequences in reproductive tissues,” Brazilian Journal of Morphological Sciences, vol. 23, no. 3-4, pp. 525–529, 2006. View at Google Scholar
  24. A. Yaguiu, M. L. Z. Dagli, E. H. Birgel Jr. et al., “Simultaneous presence of bovine papillomavirus and bovine leukemia virus in different bovine tissues: in situ hybridization and cytogenetic analysis,” Genetics and Molecular Research, vol. 7, no. 2, pp. 487–497, 2008. View at Google Scholar · View at Scopus
  25. M. S. Campo, W. F. H. Jarrett, W. O'Neil, and R. J. Barron, “Latent papillomavirus infection in cattle,” Research in Veterinary Science, vol. 56, no. 2, pp. 151–157, 1994. View at Google Scholar · View at Scopus
  26. V. Peretti, F. Ciotola, S. Albarella et al., “Chromosome fragility in cattle with chronic enzootic haematuria,” Mutagenesis, vol. 22, no. 5, pp. 317–320, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Ogawa, Y. Tomita, M. Okada et al., “Broad-spectrum detection of papillomaviruses in bovine teat papillomas and healthy teat skin,” Journal of General Virology, vol. 85, no. 8, pp. 2191–2197, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. A. M. Leal, O. P. Ferraz, C. Carvalho et al., “Quercetin induces structural chromosome aberrations and uncommon rearrangements in bovine cells transformed by the E7 protein of bovine papillomavirus type 4,” Veterinary and Comparative Oncology, vol. 1, no. 1, pp. 15–21, 2003. View at Google Scholar
  29. A. Duensing, A. Chin, L. Wang, S.-F. Kuan, and S. Duensing, “Analysis of centrosome overduplication in correlation to cell division errors in high-risk human papillomavirus (HPV)-associated anal neoplasms,” Virology, vol. 372, no. 1, pp. 157–164, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. Z. Liu, Y. Liu, Y. Hong, L. Rapp, E. J. Androphy, and J. J. Chen, “Bovine papillomavirus type 1 E6-induced sensitization to apoptosis is distinct from its transforming activity,” Virology, vol. 295, no. 2, pp. 230–237, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. S. R. C. Campos, C. Trindade, O. P. Ferraz et al., “Can established cultured papilloma cells harbor bovine papillomavirus?” Genetics and Molecular Research, vol. 7, no. 4, pp. 1119–1126, 2008. View at Publisher · View at Google Scholar · View at Scopus