Table of Contents
ISRN Vascular Medicine
Volume 2013 (2013), Article ID 916254, 27 pages
http://dx.doi.org/10.1155/2013/916254
Review Article

Targeted Drug Delivery to Endothelial Adhesion Molecules

1Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine & Therapeutics and Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
2Translational Research Center, University of Pennsylvania, The Perelman School of Medicine, TRC 10-125, 3400 Civic Center Boulevard, Building 421, Philadelphia, PA 19104-5158, USA

Received 29 April 2013; Accepted 9 June 2013

Academic Editors: M. Muniswamy and M. Simionescu

Copyright © 2013 Vladimir R. Muzykantov. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. A. Moses, H. Brem, and R. Langer, “Advancing the field of drug delivery: taking aim at cancer,” Cancer Cell, vol. 4, no. 5, pp. 337–341, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Kirby and G. Gergoriadis, “Dehydration-rehydration vesicles: a simple method for high yield drug entrapment in liposomes,” Nature Biotechnology, vol. 2, no. 11, pp. 979–984, 1984. View at Google Scholar · View at Scopus
  3. J. W. Park, K. Hong, D. B. Kirpotin et al., “Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery,” Clinical Cancer Research, vol. 8, no. 4, pp. 1172–1181, 2002. View at Google Scholar · View at Scopus
  4. P. M. Vanhoutte, “Endothelium-derived free radicals: for worse and for better,” Journal of Clinical Investigation, vol. 107, no. 1, pp. 23–25, 2001. View at Google Scholar · View at Scopus
  5. M. Simionescu, A. Gafencu, and F. Antohe, “Transcytosis of plasma macromolecules in endothelial cells: a cell biological survey,” Microscopy Research and Technique, vol. 57, no. 5, pp. 269–288, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. M. A. Gimbrone Jr., “Vascular endothelium, hemodynamic forces, and atherogenesis,” American Journal of Pathology, vol. 155, no. 1, pp. 1–5, 1999. View at Google Scholar · View at Scopus
  7. M. I. Cybulsky and M. A. Gimbrone Jr., “Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis,” Science, vol. 251, no. 4995, pp. 788–791, 1991. View at Google Scholar · View at Scopus
  8. K. Iiyama, L. Hajra, M. Iiyama et al., “Patterns of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 expression in rabbit and mouse atherosclerotic lesions and at sites predisposed to lesion formation,” Circulation Research, vol. 85, no. 2, pp. 199–207, 1999. View at Google Scholar · View at Scopus
  9. S. Muro and V. R. Muzykantov, “Targeting of antioxidant and anti-thrombotic drugs to endothelial cell adhesion molecules,” Current Pharmaceutical Design, vol. 11, no. 18, pp. 2383–2401, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. A. B. Fisher, “Redox signaling across cell membranes,” Antioxidants and Redox Signaling, vol. 11, no. 6, pp. 1349–1356, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. B. H. Segal, W. Han, J. J. Bushey et al., “NADPH oxidase limits innate immune responses in the lungs in mice,” PloS One, vol. 5, no. 3, article e9631, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. M. W. Janssen-Heininger, B. T. Mossman, N. H. Heintz et al., “Redox-based regulation of signal transduction: principles, pitfalls, and promises,” Free Radical Biology and Medicine, vol. 45, no. 1, pp. 1–17, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. A. van der Vliet, “NADPH oxidases in lung biology and pathology: host defense enzymes, and more,” Free Radical Biology and Medicine, vol. 44, no. 6, pp. 938–955, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. S. G. Rhee, “H2O2, a necessary evil for cell signaling,” Science, vol. 312, no. 5782, pp. 1882–1883, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. H. J. Forman, M. Maiorino, and F. Ursini, “Signaling functions of reactive oxygen species,” Biochemistry, vol. 49, no. 5, pp. 835–842, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. S. A. Wickline, A. M. Neubauer, P. M. Winter, S. D. Caruthers, and G. M. Lanza, “Molecular imaging and therapy of atherosclerosis with targeted nanoparticles,” Journal of Magnetic Resonance Imaging, vol. 25, no. 4, pp. 667–680, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. A. J. Hamilton, S. L. Huang, D. Warnick et al., “Intravascular ultrasound molecular imaging of atheroma components in vivo,” Journal of the American College of Cardiology, vol. 43, no. 3, pp. 453–460, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. D. P. McIntosh, X. Y. Tan, P. Oh, and J. E. Schnitzer, “Targeting endothelium and its dynamic caveolae for tissue-specific transcytosis in vivo: a pathway to overcome cell barriers to drug and gene delivery,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 4, pp. 1996–2001, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. V. R. Muzykantov, “Immunotargeting of drugs to the pulmonary vascular endothelium as a therapeutic strategy,” Pathophysiology, vol. 5, no. 1, pp. 15–33, 1998. View at Publisher · View at Google Scholar · View at Scopus
  20. V. R. Muzykantov, “Biomedical aspects of targeted delivery of drugs to pulmonary endothelium,” Expert Opinion on Drug Delivery, vol. 2, no. 5, pp. 909–926, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Oh, Y. Li, J. Yu et al., “Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy,” Nature, vol. 429, no. 6992, pp. 629–635, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. J. E. Schnitzer, “Vascular targeting as a strategy for cancer therapy,” New England Journal of Medicine, vol. 339, no. 7, pp. 472–474, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. D. D. Spragg, D. R. Alford, R. Greferath et al., “Immunotargeting of liposomes to activated vascular endothelial cells: a strategy for site-selective delivery in the cardiovascular system,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 16, pp. 8795–8800, 1997. View at Publisher · View at Google Scholar · View at Scopus
  24. S. J. Kennel, R. Lee, S. Bultman, and G. Kabalka, “Rat monoclonal antibody distribution in mice: an epitope inside the lung vascular space mediates very efficient localization,” International Journal of Radiation Applications and Instrumentation B, vol. 17, no. 2, pp. 193–200, 1990. View at Publisher · View at Google Scholar · View at Scopus
  25. V. R. Muzykantov and S. M. Danilov, “Targeting of radiolabeled monoclonal antibody against ACE to the pulmonary endothelium,” in Targeted Delivery of Imaging Agents, V. Torchilin, Ed., pp. 465–485, CRC Press, Roca Baton, Fla, USA, 1995. View at Google Scholar
  26. D. J. Goetz, M. E. el-Sabban, D. A. Hammer, and B. U. Pauli, “Lu-ECAM-1-mediated adhesion of melanoma cells to endothelium under conditions of flow,” International Journal of Cancer, vol. 65, pp. 192–199, 1996. View at Google Scholar
  27. X. Huang, G. Molema, S. King, L. Watkins, T. S. Edgington, and P. E. Thorpe, “Tumor infarction in mice by antibody-directed targeting of tissue factor to tumor vasculature,” Science, vol. 275, no. 5299, pp. 547–550, 1997. View at Publisher · View at Google Scholar · View at Scopus
  28. R. V. Stan, L. Ghitescu, B. S. Jacobson, and G. E. Palade, “Isolation, cloning, and localization of rat PV-1, a novel endothelial caveolar protein,” Journal of Cell Biology, vol. 145, no. 6, pp. 1189–1198, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Rajotte, W. Arap, M. Hagedorn, E. Koivunen, R. Pasqualini, and E. Ruoslahti, “Molecular heterogeneity of the vascular endothelium revealed by in vivo phage display,” Journal of Clinical Investigation, vol. 102, no. 2, pp. 430–437, 1998. View at Google Scholar · View at Scopus
  30. S. M. Danilov, V. R. Muzykantov, A. V. Martynov et al., “Lung is the target organ for a monoclonal antibody to angiotensin-converting enzyme,” Laboratory Investigation, vol. 64, no. 1, pp. 118–124, 1991. View at Google Scholar · View at Scopus
  31. R. Pasqualini, D. M. McDonald, and W. Arap, “Vascular targeting and antigen presentation,” Nature Immunology, vol. 2, no. 7, pp. 567–568, 2001. View at Google Scholar · View at Scopus
  32. V. R. Muzykantov, E. N. Atochina, H. Ischiropoulos, S. M. Danilov, and A. B. Fisher, “Immunotargeting of antioxidant enzymes to the pulmonary endothelium,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 11, pp. 5213–5218, 1996. View at Publisher · View at Google Scholar · View at Scopus
  33. P. N. Reynolds, S. A. Nicklin, L. Kaliberova et al., “Combined transductional and transcriptional targeting improves the specificity of transgene expression in vivo,” Nature Biotechnology, vol. 19, no. 9, pp. 838–842, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Langer, “Drug delivery and targeting,” Nature, vol. 392, no. 6679, pp. 5–10, 1998. View at Google Scholar · View at Scopus
  35. V. S. Trubetskoy, V. P. Torchilin, S. Kennel, and L. Huang, “Cationic liposomes enhance targeted delivery and expression of exogenous DNA mediated by N-terminal modified poly(L-lysine)-antibody conjugate in mouse lung endothelial cells,” Biochimica et Biophysica Acta, vol. 1131, no. 3, pp. 311–313, 1992. View at Publisher · View at Google Scholar · View at Scopus
  36. S. M. Danilov, A. V. Martynov, A. L. Klibanov et al., “Radioimmunoimaging of lung vessels: an approach using Indium-111-labeled monoclonal antibody to angiotensin-converting enzyme,” Journal of Nuclear Medicine, vol. 30, no. 10, pp. 1686–1692, 1989. View at Google Scholar · View at Scopus
  37. K. Maruyama, T. Takizawa, T. Yuda, S. J. Kennel, L. Huang, and M. Iwatsuru, “Targetability of novel immunoliposomes modified with amphipathic poly(ethylene glycol)s conjugated at their distal terminals to monoclonal antibodies,” Biochimica et Biophysica Acta, vol. 1234, no. 1, pp. 74–80, 1995. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Christofidou-Solomidou and V. R. Muzykantov, “Antioxidant strategies in respiratory medicine,” Treatments in Respiratory Medicine, vol. 5, no. 1, pp. 47–78, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. V. R. Muzykantov, “Targeting of superoxide dismutase and catalase to vascular endothelium,” Journal of Controlled Release, vol. 71, no. 1, pp. 1–21, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. R. Pasqualini, W. Arap, and D. M. McDonald, “Probing the structural and molecular diversity of tumor vasculature,” Trends in Molecular Medicine, vol. 8, no. 12, pp. 563–571, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Muro, “Challenges in design and characterization of ligand-targeted drug delivery systems,” Journal of Controlled Release, vol. 164, pp. 125–137, 2012. View at Google Scholar
  42. V. R. Muzykantov, “Delivery of antioxidant enzyme proteins to the lung,” Antioxidants and Redox Signaling, vol. 3, no. 1, pp. 39–62, 2001. View at Google Scholar · View at Scopus
  43. B. S. Ding, T. Dziubla, V. V. Shuvaev, S. Muro, and V. R. Muzykantov, “Advanced drug delivery systems that target the vascular endothelium,” Molecular Interventions, vol. 6, no. 2, pp. 98–112, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. Z. Cheng, A. Al Zaki, J. Z. Hui, V. R. Muzykantov, and A. Tsourkas, “Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities,” Science, vol. 338, pp. 903–910, 2012. View at Google Scholar
  45. A. M. Chacko, E. D. Hood, B. J. Zern, and V. R. Muzykantov, “Targeted nanocarriers for imaging and therapy of vascular inflammation,” Current Opinion in Colloid & Interface Science, vol. 16, pp. 215–227, 2011. View at Google Scholar
  46. C. Garnacho, S. M. Albelda, V. R. Muzykantov, and S. Muro, “Differential intra-endothelial delivery of polymer nanocarriers targeted to distinct PECAM-1 epitopes,” Journal of Controlled Release, vol. 130, no. 3, pp. 226–233, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Chrastina, P. Valadon, K. A. Massey, and J. E. Schnitzer, “Lung vascular targeting using antibody to aminopeptidase P: CT-SPECT imaging, biodistribution and pharmacokinetic analysis,” Journal of Vascular Research, vol. 47, no. 6, pp. 531–543, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Liu, G. E. R. Weller, B. Zern et al., “Computational model for nanocarrier binding to endothelium validated using in vivo, in vitro, and atomic force microscopy experiments,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 38, pp. 16530–16535, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. S. M. Danilov, V. D. Gavrilyuk, F. E. Franke et al., “Lung uptake of antibodies to endothelial antigens: key determinants of vascular immunotargeting,” American Journal of Physiology, vol. 280, no. 6, pp. L1335–L1347, 2001. View at Google Scholar · View at Scopus
  50. V. V. Shuvaev, M. Christofidou-Solomidou, A. Scherpereel et al., “Factors modulating the delivery and effect of enzymatic cargo conjugated with antibodies targeted to the pulmonary endothelium,” Journal of Controlled Release, vol. 118, no. 2, pp. 235–244, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. K. Watanabe, G. Lam, R. S. Keresztes, and E. A. Jaffe, “Lipopolysaccharides decrease angiotensin converting enzyme activity expressed by cultured human endothelial cells,” Journal of Cellular Physiology, vol. 150, no. 2, pp. 433–439, 1992. View at Google Scholar · View at Scopus
  52. E. N. Atochina, H. H. Hiemisch, V. R. Muzykantov, and S. M. Danilov, “Systemic administration of platelet-activating factor in rat reduces specific pulmonary uptake of circulating monoclonal antibody to angiotensin-converting enzyme,” Lung, vol. 170, no. 6, pp. 349–358, 1992. View at Google Scholar · View at Scopus
  53. V. R. Muzykantov, E. A. Puchnina, E. N. Atochina et al., “Endotoxin reduces specific pulmonary uptake of radiolabeled monoclonal antibody to angiotensin-converting enzyme,” Journal of Nuclear Medicine, vol. 32, no. 3, pp. 453–460, 1991. View at Google Scholar · View at Scopus
  54. A. Hajitou, M. Trepel, C. E. Lilley et al., “A Hybrid vector for ligand-directed tumor targeting and molecular imaging,” Cell, vol. 125, no. 2, pp. 385–398, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. E. Durr, J. Yu, K. M. Krasinska et al., “Direct proteomic mapping of the lung microvascular endothelial cell surface in vivo and in cell culture,” Nature Biotechnology, vol. 22, no. 8, pp. 985–992, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. E. T. M. Keelan, A. A. Harrison, P. T. Chapman et al., “Imaging vascular endothelial activation: an approach using radiolabeled monoclonal antibodies against the endothelial cell adhesion molecule E-selectin,” Journal of Nuclear Medicine, vol. 35, no. 2, pp. 276–281, 1994. View at Google Scholar · View at Scopus
  57. S. Muro, M. Koval, and V. Muzykantov, “Endothelial endocytic pathways: gates for vascular drug delivery,” Current Vascular Pharmacology, vol. 2, no. 3, pp. 281–299, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. S. Danilov, E. Atochina, H. Hiemisch et al., “Interaction of mAb to angiotensin-converting enzyme (ACE) with antigen in vitro and in vivo: antibody targeting to the lung induces ACE antigenic modulation,” International Immunology, vol. 6, no. 8, pp. 1153–1160, 1994. View at Google Scholar · View at Scopus
  59. H. Heitsch, S. Brovkovych, T. Malinski, and G. Wiemer, “Angiotensin-(1-7)-stimulated nitric oxide and superoxide release from endothelial cells,” Hypertension, vol. 37, no. 1, pp. 72–76, 2001. View at Google Scholar · View at Scopus
  60. V. R. Muzykantov, E. N. Atochina, A. Kuo et al., “Endothelial cells internalize monoclonal antibody to angiotensin-converting enzyme,” American Journal of Physiology, vol. 270, no. 5, pp. L704–L713, 1996. View at Google Scholar · View at Scopus
  61. I. V. Balyasnikova, R. Metzger, D. J. Visintine et al., “Selective rat lung endothelial targeting with a new set of monoclonal antibodies to angiotensin I-converting enzyme,” Pulmonary Pharmacology and Therapeutics, vol. 18, no. 4, pp. 251–267, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. I. V. Balyasnikova, Z. L. Sun, R. Metzger et al., “Monoclonal antibodies to native mouse angiotensin-converting enzyme (CD143): ACE expression quantification, lung endothelial cell targeting and gene delivery,” Tissue Antigens, vol. 67, no. 1, pp. 10–29, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. E. N. Atochina, I. V. Balyasnikova, S. M. Danilov, D. Neil Granger, A. B. Fisher, and V. R. Muzykantov, “Immunotargeting of catalase to ACE or ICAM-1 protects perfused rat lungs against oxidative stress,” American Journal of Physiology, vol. 275, no. 4, pp. L806–L817, 1998. View at Google Scholar · View at Scopus
  64. K. Nowak, S. Weih, R. Metzger et al., “Immunotargeting of catalase to lung endothelium via anti-angiotensin-converting enzyme antibodies attenuates ischemia-reperfusion injury of the lung in vivo,” American Journal of Physiology, vol. 293, no. 1, pp. L162–L169, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. W. H. Miller, M. J. Brosnan, D. Graham et al., “Targeting endothelial cells with adenovirus expressing nitric oxide synthase prevents elevation of blood pressure in stroke-prone spontaneously hypertensive rats,” Molecular Therapy, vol. 12, no. 2, pp. 321–327, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. P. N. Reynolds, K. R. Zinn, V. D. Gavrilyuk et al., “A targetable, injectable adenoviral vector for selective gene delivery to pulmonary endothelium in vivo,” Molecular Therapy, vol. 2, no. 6, pp. 562–578, 2000. View at Publisher · View at Google Scholar · View at Scopus
  67. A. M. Reynolds, W. Xia, M. D. Holmes et al., “Bone morphogenetic protein type 2 receptor gene therapy attenuates hypoxic pulmonary hypertension,” American Journal of Physiology, vol. 292, no. 5, pp. L1182–L1192, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. K. Nowak, C. Hanusch, K. Nicksch et al., “Pre-ischaemic conditioning of the pulmonary endothelium by immunotargeting of catalase via angiotensin-converting-enzyme antibodies,” European Journal Cardio-Thoracic Surgery, vol. 37, no. 4, pp. 859–863, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. I. Morecroft, K. White, P. Caruso et al., “Gene therapy by targeted adenovirus-mediated knockdown of pulmonary endothelial Tph1 attenuates hypoxia-induced pulmonary hypertension,” Molecular Therapy, vol. 20, no. 8, pp. 1516–1528, 2012. View at Publisher · View at Google Scholar · View at Scopus
  70. K. Nowak, H. C. Kolbel, R. P. Metzger et al., “Immunotargeting of the pulmonary endothelium via angiotensin-converting-enzyme in isolated ventilated and perfused human lung,” Advances in Experimental Medicine and Biology, vol. 756, pp. 203–212, 2013. View at Google Scholar
  71. W. C. Aird, J. M. Edelberg, H. Weiler-Guettler, W. W. Simmons, T. W. Smith, and R. D. Rosenberg, “Vascular bed-specific expression of an endothelial cell gene is programmed by the tissue microenvironment,” Journal of Cell Biology, vol. 138, no. 5, pp. 1117–1124, 1997. View at Publisher · View at Google Scholar · View at Scopus
  72. W. C. Aird, “Phenotypic heterogeneity of the endothelium. I: structure, function, and mechanisms,” Circulation Research, vol. 100, no. 2, pp. 158–173, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. L. Ghitescu, B. S. Jacobson, and P. Crine, “A novel, 85 KDA endothelial antigen differentiates plasma membrane macrodomains in lung alveolar capillaries,” Endothelium, vol. 6, no. 3, pp. 241–250, 1999. View at Google Scholar · View at Scopus
  74. J. C. Murciano, D. W. Harshaw, L. Ghitescu, S. M. Danilov, and V. R. Muzykantov, “Vascular immunotargeting to endothelial surface in a specific macrodomain in alveolar capillaries,” American Journal of Respiratory and Critical Care Medicine, vol. 164, no. 7, pp. 1295–1302, 2001. View at Google Scholar · View at Scopus
  75. P. Oh, P. Borgström, H. Witkiewicz et al., “Live dynamic imaging of caveolae pumping targeted antibody rapidly and specifically across endothelium in the lung,” Nature Biotechnology, vol. 25, no. 4, pp. 327–337, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. M. D. Howard, M. Jay, T. D. Dziubla, and X. Lu, “PEGylation of nanocarrier drug delivery systems: state of the art,” Journal of Biomedical Nanotechnology, vol. 4, no. 2, pp. 133–148, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. S. J. Kennel, R. Falcioni, and J. W. Wesley, “Microdistribution of specific rat monoclonal antibodies to mouse tissues and human tumor xenografts,” Cancer Research, vol. 51, no. 5, pp. 1529–1536, 1991. View at Google Scholar · View at Scopus
  78. M. Christofidou-Solomidou, S. Kennel, A. Scherpereel et al., “Vascular immunotargeting of glucose oxidase to the endothelial antigens induces distinct forms of oxidant acute lung injury: targeting to thrombomodulin, but not to PECAM-1, causes pulmonary thrombosis and neutrophil transmigration,” American Journal of Pathology, vol. 160, no. 3, pp. 1155–1169, 2002. View at Google Scholar · View at Scopus
  79. C. T. Esmon, “Thrombomodulin as a model of molecular mechanisms that modulate protease specificity and function at the vessel surface,” FASEB Journal, vol. 9, no. 10, pp. 946–955, 1995. View at Google Scholar · View at Scopus
  80. V. R. Muzykantov, “Targeted therapeutics and nanodevices for vascular drug delivery: quo vadis?” IUBMB Life, vol. 63, no. 8, pp. 583–585, 2011. View at Publisher · View at Google Scholar · View at Scopus
  81. T. Kumasaka, W. M. Quinlan, N. A. Doyle et al., “Role of the intercellular adhesion molecule-1 (ICAM-1) in endotoxin-induced pneumonia evaluated using ICAM-1 antisense oligonucleotides, anti-ICAM-1 monoclonal antibodies, and ICAM-1 mutant mice,” Journal of Clinical Investigation, vol. 97, no. 10, pp. 2362–2369, 1996. View at Google Scholar · View at Scopus
  82. T. K. Kishimoto and R. Rothlein, “Integrins, ICAMs, and selectins: role and regulation of adhesion molecules in neutrophil recruitment to inflammatory sites,” Advances in Pharmacology C, vol. 25, pp. 117–169, 1994. View at Publisher · View at Google Scholar · View at Scopus
  83. S. M. Albelda, “Endothelial and epithelial cell adhesion molecules,” American Journal of Respiratory Cell and Molecular Biology, vol. 4, no. 3, pp. 195–203, 1991. View at Google Scholar · View at Scopus
  84. T. A. Springer, “Adhesion receptors of the immune system,” Nature, vol. 346, no. 6283, pp. 425–434, 1990. View at Publisher · View at Google Scholar · View at Scopus
  85. K. A. Kelly, J. R. Allport, A. Tsourkas, V. R. Shinde-Patil, L. Josephson, and R. Weissleder, “Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle,” Circulation Research, vol. 96, no. 3, pp. 327–336, 2005. View at Publisher · View at Google Scholar · View at Scopus
  86. A. Tsourkas, V. R. Shinde-Patil, K. A. Kelly et al., “In vivo imaging of activated endothelium using an anti-VCAM-1 magnetooptical probe,” Bioconjugate Chemistry, vol. 16, no. 3, pp. 576–581, 2005. View at Publisher · View at Google Scholar · View at Scopus
  87. D. B. Taichman, M. I. Cybulsky, I. Djaffar et al., “Tumor cell surface alpha 4 beta 1 integrin mediates adhesion to vascular endothelium: demonstration of an interaction with the N-terminal domains of INCAM-110/VCAM-1,” Cell Regulation, vol. 2, no. 5, pp. 347–355, 1991. View at Google Scholar · View at Scopus
  88. T. W. Kuijpers, M. Raleigh, T. Kavanagh et al., “Cytokine-activated endothelial cells internalize E-selectin into a lysosomal compartment of vesiculotubular shape: a tubulin-driven process,” Journal of Immunology, vol. 152, no. 10, pp. 5060–5069, 1994. View at Google Scholar · View at Scopus
  89. K. S. Straley and S. A. Green, “Rapid transport of internalized P-selectin to late endosomes and the TGN: roles in regulating cell surface expression and recycling to secretory granules,” Journal of Cell Biology, vol. 151, no. 1, pp. 107–116, 2000. View at Publisher · View at Google Scholar · View at Scopus
  90. E. J. U. von Asmuth, E. F. Smeets, L. A. Ginsel, J. J. M. Onderwater, J. F. M. Leeuwenberg, and W. A. Buurman, “Evidence for endocytosis of E-selectin in human endothelial cells,” European Journal of Immunology, vol. 22, no. 10, pp. 2519–2526, 1992. View at Publisher · View at Google Scholar · View at Scopus
  91. S. Kessner, A. Krause, U. Rothe, and G. Bendas, “Investigation of the cellular uptake of E-Selectin-targeted immunoliposomes by activated human endothelial cells,” Biochimica et Biophysica Acta, vol. 1514, no. 2, pp. 177–190, 2001. View at Publisher · View at Google Scholar · View at Scopus
  92. R. J. Kok, M. Everts, S. A. Ásgeirsdóttir, D. K. F. Meijer, and G. Molema, “Cellular handling of a dexamethasone-anti-E-selectin immunoconjugate by activated endothelial cells: comparison with free dexamethasone,” Pharmaceutical Research, vol. 19, no. 11, pp. 1730–1735, 2002. View at Publisher · View at Google Scholar · View at Scopus
  93. O. A. Harari, T. J. Wickham, C. J. Stocker et al., “Targeting an adenoviral gene vector to cytokine-activated vascular endothelium via E-selectin,” Gene Therapy, vol. 6, no. 5, pp. 801–807, 1999. View at Publisher · View at Google Scholar · View at Scopus
  94. M. Everts, R. J. Kok, S. A. Ásgeirsdóttir et al., “Selective intracellular delivery of dexamethasone into activated endothelial cells using an E-selectin-directed immunoconjugate,” Journal of Immunology, vol. 168, no. 2, pp. 883–889, 2002. View at Google Scholar · View at Scopus
  95. I. Ricard, M. D. Payet, and G. Dupuis, “VCAM-1 is internalized by a clathrin-related pathway in human endothelial cells but its alpha 4 beta 1 integrin counter-receptor remains associated with the plasma membrane in human T lymphocytes,” European Journal of Immunology, vol. 28, pp. 1708–1718, 1998. View at Google Scholar
  96. J. R. Lindner, J. Song, J. Christiansen, A. L. Klibanov, F. Xu, and K. Ley, “Ultrasound assessment of inflammation and renal tissue injury with microbubbles targeted to P-selectin,” Circulation, vol. 104, no. 17, pp. 2107–2112, 2001. View at Google Scholar · View at Scopus
  97. D. B. Cines, E. S. Pollak, C. A. Buck et al., “Endothelial cells in physiology and in the pathophysiology of vascular disorders,” Blood, vol. 91, no. 10, pp. 3527–3561, 1998. View at Google Scholar · View at Scopus
  98. J. R. Lindner, A. L. Klibanov, and K. Ley, “Targeting inflammation,” in Biomedical Aspects of Drug Targeting, V. R. Muzykantov and V. P. Torchilin, Eds., pp. 149–172, Kluwer Academic Publishers, Boston, Mass, USA, 2003. View at Google Scholar
  99. O. Carpen, P. Pallai, D. E. Staunton, and T. A. Springer, “Association of intercellular adhesion molecule-1 (ICAM-1) with actin-containing cytoskeleton and α-actinin,” Journal of Cell Biology, vol. 118, no. 5, pp. 1223–1234, 1992. View at Google Scholar · View at Scopus
  100. C. J. Treutiger, A. Heddini, V. Fernandez, W. A. Muller, and M. Wahlgren, “PECAM-1/CD31, an endothelial receptor for binding Plasmodium falciparum-infected erythrocytes,” Nature Medicine, vol. 3, no. 12, pp. 1405–1408, 1997. View at Publisher · View at Google Scholar · View at Scopus
  101. S. R. Thomas, P. K. Witting, and G. R. Drummond, “Redox control of endothelial function and dysfunction: molecular mechanisms and therapeutic opportunities,” Antioxidants and Redox Signaling, vol. 10, no. 10, pp. 1713–1765, 2008. View at Publisher · View at Google Scholar · View at Scopus
  102. A. Almenar-Queralt, A. Duperray, L. A. Miles, J. Felez, and D. C. Altieri, “Apical topography and modulation of ICAM-1 expression on activated endothelium,” American Journal of Pathology, vol. 147, no. 5, pp. 1278–1288, 1995. View at Google Scholar · View at Scopus
  103. L. H. Romer, N. V. McLean, H. C. Yan, M. Daise, J. Sun, and H. M. DeLisser, “IFN-γ and TNF-α induce redistribution of PECAM-1 (CD31) on human endothelial cells,” Journal of Immunology, vol. 154, no. 12, pp. 6582–6592, 1995. View at Google Scholar · View at Scopus
  104. R. Scalia and A. M. Lefer, “In vivo regulation of PECAM-1 activity during acute endothelial dysfunction in the rat mesenteric microvasculature,” Journal of Leukocyte Biology, vol. 64, no. 2, pp. 163–169, 1998. View at Google Scholar · View at Scopus
  105. R. Rothlein and C. Wegner, “Role of intercellular adhesion molecule-1 in the inflammatory response,” Kidney International, vol. 41, no. 3, pp. 617–619, 1992. View at Google Scholar · View at Scopus
  106. S. Muro, X. Cui, C. Gajewski, J. C. Murciano, V. R. Muzykantov, and M. Koval, “Slow intracellular trafficking of catalase nanoparticles targeted to ICAM-1 protects endothelial cells from oxidative stress,” American Journal of Physiology, vol. 285, no. 5, pp. C1339–C1347, 2003. View at Google Scholar · View at Scopus
  107. A. K. Hubbard and R. Rothlein, “Intercellular adhesion molecule-1 (ICAM-1) expression and cell signaling cascades,” Free Radical Biology and Medicine, vol. 28, no. 9, pp. 1379–1386, 2000. View at Publisher · View at Google Scholar · View at Scopus
  108. M. Y. Cao, M. Huber, N. Beauchemin, J. Famiglietti, S. M. Albelda, and A. Veillette, “Regulation of mouse PECAM-1 tyrosine phosphorylation by the Src and Csk families of protein-tyrosine kinases,” Journal of Biological Chemistry, vol. 273, no. 25, pp. 15765–15772, 1998. View at Publisher · View at Google Scholar · View at Scopus
  109. G. Cao, C. D. O'Brien, Z. Zhou et al., “Involvement of human PECAM-1 in angiogenesis and in vitro endothelial cell migration,” American Journal of Physiology, vol. 282, no. 5, pp. C1181–C1190, 2002. View at Google Scholar · View at Scopus
  110. H. M. DeLisser, M. Christofidou-Solomidou, R. M. Strieter et al., “Involvement of endothelial PECAM-1/CD31 in angiogenesis,” American Journal of Pathology, vol. 151, no. 3, pp. 671–677, 1997. View at Google Scholar · View at Scopus
  111. H. M. DeLisser, H. C. Y. Horng Chin Yan, P. J. Newman, W. A. Muller, C. A. Buck, and S. M. Albelda, “Platelet/endothelial cell adhesion molecule-1 (CD31)-mediated cellular aggregation involves cell surface glycosaminoglycans,” Journal of Biological Chemistry, vol. 268, no. 21, pp. 16037–16046, 1993. View at Google Scholar · View at Scopus
  112. M. S. Diamond, D. E. Staunton, A. R. de Fougerolles et al., “ICAM-1 (CD54): a counter-receptor for Mac-1 (CD11b/CD18),” Journal of Cell Biology, vol. 111, no. 6, pp. 3129–3139, 1990. View at Publisher · View at Google Scholar · View at Scopus
  113. C. D. Jun, M. Shimaoka, C. V. Carman, J. Takagi, and T. A. Springer, “Dimerization and the effectiveness of ICAM-1 in mediating LFA-1-dependent adhesion,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 12, pp. 6830–6835, 2001. View at Publisher · View at Google Scholar · View at Scopus
  114. M. T. Nakada, K. Amin, M. Christofidou-Solomidou et al., “Antibodies against the first Ig-like domain of human platelet endothelial cell adhesion molecule-1 (PECAM-1) that inhibit PECAM-1-dependent homophilic adhesion block in vivo neutrophil recruitment,” Journal of Immunology, vol. 164, no. 1, pp. 452–462, 2000. View at Google Scholar · View at Scopus
  115. T. Murohara, J. A. Delyani, S. M. Albelda, and A. M. Lefer, “Blockade of platelet endothelial cell adhesion molecule-1 protects against myocardial ischemia and reperfusion injury in cats,” Journal of Immunology, vol. 156, no. 9, pp. 3550–3557, 1996. View at Google Scholar · View at Scopus
  116. V. R. Muzykantov, M. Christofidou-Solomidou, I. Balyasnikova et al., “Streptavidin facilitates internalization and pulmonary targeting of an anti-endothelial cell antibody (platelet-endothelial cell adhesion molecule 1): a strategy for vascular immunotargeting of drugs,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 5, pp. 2379–2384, 1999. View at Publisher · View at Google Scholar · View at Scopus
  117. S. Muro, C. Gajewski, M. Koval, and V. R. Muzykantov, “ICAM-1 recycling in endothelial cells: a novel pathway for sustained intracellular delivery and prolonged effects of drugs,” Blood, vol. 105, no. 2, pp. 650–658, 2005. View at Publisher · View at Google Scholar · View at Scopus
  118. A. Scherpereel, J. J. Rome, R. Wiewrodt et al., “Platelet-endothelial cell adhesion molecule-1-directed immunotargeting to cardiopulmonary vasculature,” Journal of Pharmacology and Experimental Therapeutics, vol. 300, no. 3, pp. 777–786, 2002. View at Publisher · View at Google Scholar · View at Scopus
  119. J. Panes, M. A. Perry, D. C. Anderson et al., “Portal hypertension enhances endotoxin-induced intercellular adhesion molecule 1 up-regulation in the rat,” Gastroenterology, vol. 110, no. 3, pp. 866–874, 1996. View at Publisher · View at Google Scholar · View at Scopus
  120. J. C. Murciano, S. Muro, L. Koniaris et al., “ICAM-directed vascular immunotargeting of antithrombotic agents to the endothelial luminal surface,” Blood, vol. 101, no. 10, pp. 3977–3984, 2003. View at Publisher · View at Google Scholar · View at Scopus
  121. M. Christofidou-Solomidou, A. Scherpereel, R. Wiewrodt et al., “PECAM-directed delivery of catalase to endothelium protects against pulmonary vascular oxidative stress,” American Journal of Physiology, vol. 285, no. 2, pp. L283–L292, 2003. View at Google Scholar · View at Scopus
  122. A. Scherpereel, R. Wiewrodt, M. Christofidou-Solomidou et al., “Cell-selective intracellular delivery of a foreign enzyme to endothelium in vivo using vascular immunotargeting,” FASEB Journal, vol. 15, no. 2, pp. 416–426, 2001. View at Publisher · View at Google Scholar · View at Scopus
  123. K. Danielyan, B. S. Ding, C. Gottstein, D. B. Cines, and V. R. Muzykantov, “Delivery of anti-platelet-endothelial cell adhesion molecule single-chain variable fragment-urokinase fusion protein to the cerebral vasculature lyses arterial clots and attenuates postischemic brain edema,” Journal of Pharmacology and Experimental Therapeutics, vol. 321, no. 3, pp. 947–952, 2007. View at Publisher · View at Google Scholar · View at Scopus
  124. C. Garnacho, R. Dhami, E. Simone et al., “Delivery of acid sphingomyelinase in normal and niemann-pick disease mice using intercellular adhesion molecule-1-targeted polymer nanocarriers,” Journal of Pharmacology and Experimental Therapeutics, vol. 325, no. 2, pp. 400–408, 2008. View at Publisher · View at Google Scholar · View at Scopus
  125. S. Muro, T. Dziubla, W. Qiu et al., “Endothelial targeting of high-affinity multivalent polymer nanocarriers directed to intercellular adhesion molecule 1,” Journal of Pharmacology and Experimental Therapeutics, vol. 317, no. 3, pp. 1161–1169, 2006. View at Publisher · View at Google Scholar · View at Scopus
  126. A. J. Gow, F. Branco, M. Christofidou-Solomidou, L. Black-Schultz, S. M. Albelda, and V. R. Muzykantov, “Immunotargeting of glucose oxidase: intracellular production of H2O2 and endothelial oxidative stress,” American Journal of Physiology, vol. 277, no. 2, pp. L271–L281, 1999. View at Google Scholar · View at Scopus
  127. B. S. Ding, C. Gottstein, A. Grunow et al., “Endothelial targeting of a recombinant construct fusing a PECAM-1 single-chain variable antibody fragment (scFv) with prourokinase facilitates prophylactic thrombolysis in the pulmonary vasculature,” Blood, vol. 106, no. 13, pp. 4191–4198, 2005. View at Publisher · View at Google Scholar · View at Scopus
  128. A. K. Bélizaire, L. Tchistiakova, Y. St-Pierre, and V. Alakhov, “Identification of a murine ICAM-1-specific peptide by subtractive phage library selection on cells,” Biochemical and Biophysical Research Communications, vol. 309, no. 3, pp. 625–630, 2003. View at Publisher · View at Google Scholar · View at Scopus
  129. G. X. Luo, L. A. Kohlstaedt, C. H. Charles et al., “Humanization of an anti-ICAM-1 antibody with over 50-fold affinity and functional improvement,” Journal of Immunological Methods, vol. 275, no. 1-2, pp. 31–40, 2003. View at Publisher · View at Google Scholar · View at Scopus
  130. C. H. Charles, G. X. Luo, L. A. Kohlstaedt et al., “Prevention of human rhinovirus infection by multivalent Fab molecules directed against ICAM-1,” Antimicrobial Agents and Chemotherapy, vol. 47, no. 5, pp. 1503–1508, 2003. View at Publisher · View at Google Scholar · View at Scopus
  131. K. Furuya, H. Takeda, S. Azhar et al., “Examination of several potential mechanisms for the negative outcome in a clinical stroke trial of enlimomab, a murine anti-human intercellular adhesion molecule-1 antibody: a bedside-to-bench study,” Stroke, vol. 32, no. 11, pp. 2665–2674, 2001. View at Google Scholar · View at Scopus
  132. R. Rothlein, E. A. Mainolfi, and T. K. Kishimoto, “Treatment of inflammation with anti-ICAM-1,” Research in Immunology, vol. 144, no. 9, pp. 735–739, 1993. View at Google Scholar · View at Scopus
  133. C. Garnacho, D. Serrano, and S. Muro, “A fibrinogen-derived peptide provides intercellular adhesion molecule-1-specific targeting and intraendothelial transport of polymer nanocarriers in human cell cultures and mice,” Journal of Pharmacology and Experimental Therapeutics, vol. 340, no. 3, pp. 638–647, 2012. View at Publisher · View at Google Scholar · View at Scopus
  134. S. Danilov, E. Jaspard, T. Churakova et al., “Structure-function analysis of angiotensin I-converting enzyme using monoclonal antibodies. Selective inhibition of the amino-terminal active site,” Journal of Biological Chemistry, vol. 269, no. 43, pp. 26806–26814, 1994. View at Google Scholar · View at Scopus
  135. I. V. Balyasnikova, E. H. Karran, R. F. Albrecht II, and S. M. Danilov, “Epitope-specific antibody-induced cleavage of angiotensin-converting enzyme from the cell surface,” Biochemical Journal, vol. 362, no. 3, pp. 585–595, 2002. View at Publisher · View at Google Scholar · View at Scopus
  136. K. Gordon, I. V. Balyasnikova, A. B. Nesterovitch, D. E. Schwartz, E. D. Sturrock, and S. M. Danilov, “Fine epitope mapping of monoclonal antibodies 9B9 and 3G8 to the N domain of angiotensin-converting enzyme (CD143) defines a region involved in regulating angiotensin-converting enzyme dimerization and shedding,” Tissue Antigens, vol. 75, no. 2, pp. 136–150, 2010. View at Publisher · View at Google Scholar · View at Scopus
  137. A. M. Chacko, M. Nayak, C. F. Greineder, H. M. Delisser, and V. R. Muzykantov, “Collaborative enhancement of antibody binding to distinct PECAM-1 epitopes modulates endothelial targeting,” PLoS One, vol. 7, no. 4, Article ID e34958, 2012. View at Publisher · View at Google Scholar
  138. S. Muro, “New biotechnological and nanomedicine strategies for treatment of lysosomal storage disorders,” Wiley Interdisciplinary Reviews, vol. 2, no. 2, pp. 189–204, 2010. View at Publisher · View at Google Scholar · View at Scopus
  139. A. J. Calderon, V. Muzykantov, S. Muro, and D. M. Eckmann, “Flow dynamics, binding and detachment of spherical carriers targeted to ICAM-1 on endothelial cells,” Biorheology, vol. 46, no. 4, pp. 323–341, 2009. View at Publisher · View at Google Scholar · View at Scopus
  140. A. J. Calderon, T. Bhowmick, J. Leferovich et al., “Optimizing endothelial targeting by modulating the antibody density and particle concentration of anti-ICAM coated carriers,” Journal of Controlled Release, vol. 150, no. 1, pp. 37–44, 2011. View at Publisher · View at Google Scholar · View at Scopus
  141. A. O. Eniola and D. A. Hammer, “In vitro characterization of leukocyte mimetic for targeting therapeutics to the endothelium using two receptors,” Biomaterials, vol. 26, no. 34, pp. 7136–7144, 2005. View at Publisher · View at Google Scholar · View at Scopus
  142. R. C. Gunawan and D. T. Auguste, “The role of antibody synergy and membrane fluidity in the vascular targeting of immunoliposomes,” Biomaterials, vol. 31, no. 5, pp. 900–907, 2010. View at Publisher · View at Google Scholar · View at Scopus
  143. I. T. Papademetriou, C. Garnacho, E. H. Schuchman, and S. Muro, “In vivo performance of polymer nanocarriers dually-targeted to epitopes of the same or different receptors,” Biomaterials, vol. 34, pp. 3459–3466, 2013. View at Google Scholar
  144. P. G. Bloemen, P. A. Henricks, L. van Bloois et al., “Adhesion molecules: a new target for immunoliposome-mediated drug delivery,” FEBS Letters, vol. 357, pp. 140–144, 1995. View at Google Scholar
  145. M. Bartsch, A. H. Weeke-Klimp, H. W. M. Morselt et al., “Optimized targeting of polyethylene glycol-stabilized anti-intercellular adhesion molecule 1 oligonucleotide/lipid particles to liver sinusoidal endothelial cells,” Molecular Pharmacology, vol. 67, no. 3, pp. 883–890, 2005. View at Publisher · View at Google Scholar · View at Scopus
  146. S. Khondee, A. Baoum, T. J. Siahaan, and C. Berkland, “Calcium condensed LABL-TAT complexes effectively target gene delivery to ICAM-1 expressing cells,” Molecular Pharmaceutics, vol. 8, no. 3, pp. 788–798, 2011. View at Publisher · View at Google Scholar · View at Scopus
  147. G. P. Robbins, R. L. Saunders, J. B. Haun, J. Rawson, M. J. Therien, and D. A. Hammer, “Tunable leuko-polymersomes that adhere specifically to inflammatory markers,” Langmuir, vol. 26, no. 17, pp. 14089–14096, 2010. View at Publisher · View at Google Scholar · View at Scopus
  148. T. D. Dziubla, V. V. Shuvaev, N. K. Hong et al., “Endothelial targeting of semi-permeable polymer nanocarriers for enzyme therapies,” Biomaterials, vol. 29, no. 2, pp. 215–227, 2008. View at Publisher · View at Google Scholar · View at Scopus
  149. S. Muro, C. Garnacho, J. A. Champion et al., “Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers,” Molecular Therapy, vol. 16, no. 8, pp. 1450–1458, 2008. View at Publisher · View at Google Scholar · View at Scopus
  150. N. Zhang, C. Chittasupho, C. Duangrat, T. J. Siahaan, and C. Berkland, “PLGA nanoparticle-peptide conjugate effectively targets intercellular cell-adhesion molecule-1,” Bioconjugate Chemistry, vol. 19, no. 1, pp. 145–152, 2008. View at Publisher · View at Google Scholar · View at Scopus
  151. M. Christofidou-Solomidou, G. G. Pietra, C. C. Solomides et al., “Immunotargeting of glucose oxidase to endothelium in vivo causes oxidative vascular injury in the lungs,” American Journal of Physiology, vol. 278, no. 4, pp. L794–L805, 2000. View at Google Scholar · View at Scopus
  152. T. D. Sweitzer, A. P. Thomas, R. Wiewrodt, M. T. Nakada, F. Branco, and V. R. Muzykantov, “Pecam-directed immunotargeting of catalase: specific, rapid and transient protection against hydrogen peroxide,” Free Radical Biology and Medicine, vol. 34, no. 8, pp. 1035–1046, 2003. View at Publisher · View at Google Scholar · View at Scopus
  153. R. Wiewrodt, A. P. Thomas, L. Cipelletti et al., “Size-dependent intracellular immunotargeting of therapeutic cargoes into endothelial cells,” Blood, vol. 99, no. 3, pp. 912–922, 2002. View at Publisher · View at Google Scholar · View at Scopus
  154. S. Li, Y. Tan, E. Viroonchatapan, B. R. Pitt, and L. Huang, “Targeted gene delivery to pulmonary endothelium by anti-PECAM antibody,” American Journal of Physiology, vol. 278, no. 3, pp. L504–L511, 2000. View at Google Scholar · View at Scopus
  155. F. S. Villanueva, R. J. Jankowski, S. Klibanov et al., “Microbubbles targeted to intercellular adhesion molecule-1 bind to activated coronary artery endothelial cells,” Circulation, vol. 98, no. 1, pp. 1–5, 1998. View at Google Scholar · View at Scopus
  156. S. Mukherjee, R. N. Ghosh, and F. R. Maxfield, “Endocytosis,” Physiological Reviews, vol. 77, no. 3, pp. 759–803, 1997. View at Google Scholar · View at Scopus
  157. E. Caron and A. Hall, Phagocytosis, Oxford University Press, 2001.
  158. G. G. Sahagian and C. J. Steer, “Transmembrane orientation of the mannose 6-phosphate receptor in isolated clathrin-coated vesicles,” Journal of Biological Chemistry, vol. 260, no. 17, pp. 9838–9842, 1985. View at Google Scholar · View at Scopus
  159. I. Mellman, “Endocytosis and molecular sorting,” Annual Review of Cell and Developmental Biology, vol. 12, pp. 575–625, 1996. View at Publisher · View at Google Scholar · View at Scopus
  160. R. D. Minshall, C. Tiruppathi, S. M. Vogel et al., “Endothelial cell-surface gp60 activates vesicle formation and trafficking via G(i)-coupled Src kinase signaling pathway,” Journal of Cell Biology, vol. 150, no. 5, pp. 1057–1069, 2000. View at Publisher · View at Google Scholar · View at Scopus
  161. D. Predescu, S. Predescu, and A. B. Malik, “Transport of nitrated albumin across continuous vascular endothelium,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 21, pp. 13932–13937, 2002. View at Publisher · View at Google Scholar · View at Scopus
  162. N. Ilan, A. Mohsenin, L. Cheung, and J. A. Madri, “PECAM-1 shedding during apoptosis generates a membrane-anchored truncated molecule with unique signaling characteristics,” FASEB Journal, vol. 15, no. 2, pp. 362–372, 2001. View at Publisher · View at Google Scholar · View at Scopus
  163. S. Muro, R. Wiewrodt, A. Thomas et al., “A novel endocytic pathway induced by clustering endothelial ICAM-1 or PECAM-1,” Journal of Cell Science, vol. 116, no. 8, pp. 1599–1609, 2003. View at Publisher · View at Google Scholar · View at Scopus
  164. S. Muro, V. R. Muzykantov, and J. C. Murciano, “Characterization of endothelial internalization and targeting of antibody-enzyme conjugates in cell cultures and in laboratory animals,” Methods in Molecular Biology, vol. 283, pp. 21–36, 2004. View at Google Scholar · View at Scopus
  165. L. A. Carver and J. E. Schnitzer, “Caveolae: mining little caves for new cancer targets,” Nature Reviews Cancer, vol. 3, no. 8, pp. 571–581, 2003. View at Publisher · View at Google Scholar · View at Scopus
  166. E. Dejana, “Endothelial adherens junctions. Implications in the control of vascular permeability and angiogenesis,” Journal of Clinical Investigation, vol. 98, no. 9, pp. 1949–1953, 1996. View at Google Scholar · View at Scopus
  167. W. M. Pardridge, J. Buciak, J. Yang, and D. Wu, “Enhanced endocytosis in cultured human breast carcinoma cells and in vivo biodistribution in rats of a humanized monoclonal antibody after cationization of the protein,” Journal of Pharmacology and Experimental Therapeutics, vol. 286, no. 1, pp. 548–554, 1998. View at Google Scholar · View at Scopus
  168. D. Predescu, S. M. Vogel, and A. B. Malik, “Functional and morphological studies of protein transcytosis in continuous endothelia,” American Journal of Physiology, vol. 287, no. 5, pp. L895–L901, 2004. View at Publisher · View at Google Scholar · View at Scopus
  169. Y. Zhang, F. Schlachetzki, and W. M. Pardridge, “Global non-viral gene transfer to the promate brain following intravenous administration,” Molecular Therapy, vol. 7, no. 1, pp. 11–18, 2003. View at Publisher · View at Google Scholar · View at Scopus
  170. J. E. Schnitzer, P. Oh, and D. P. McIntosh, “Role of GTP hydrolysis in fission of caveolae directly from plasma membranes,” Science, vol. 274, no. 5285, pp. 239–242, 1996. View at Publisher · View at Google Scholar · View at Scopus
  171. S. M. Vogel, C. R. Easington, R. D. Minshall et al., “Evidence of transcellular permeability pathway in microvessels,” Microvascular Research, vol. 61, no. 1, pp. 87–101, 2001. View at Publisher · View at Google Scholar · View at Scopus
  172. A. M. Dvorak and D. Feng, “The vesiculo-vacuolar organelle (VVO): a new endothelial cell permeability organelle,” Journal of Histochemistry and Cytochemistry, vol. 49, no. 4, pp. 419–431, 2001. View at Google Scholar · View at Scopus
  173. T. G. Iversen, N. Frerker, and K. Sandvig, “Uptake of ricinB-quantum dot nanoparticles by a macropinocytosis-like mechanism,” Journal of Nanobiotechnology, vol. 10, article 33, 2012. View at Google Scholar
  174. Z. Wang, C. Tiruppathi, R. D. Minshall, and A. B. Malik, “Size and dynamics of caveolae studied using nanoparticles in living endothelial cells,” ACS Nano, vol. 3, no. 12, pp. 4110–4116, 2009. View at Publisher · View at Google Scholar · View at Scopus
  175. P. Oh, P. Borgström, H. Witkiewicz et al., “Live dynamic imaging of caveolae pumping targeted antibody rapidly and specifically across endothelium in the lung,” Nature Biotechnology, vol. 25, no. 4, pp. 327–337, 2007. View at Publisher · View at Google Scholar · View at Scopus
  176. J. E. Schnitzer, J. Liu, and P. Oh, “Endothelial caveolae have the molecular transport machinery for vesicle budding, docking, and fusion including VAMP, NSF, SNAP, annexins, and GTPases,” Journal of Biological Chemistry, vol. 270, no. 24, pp. 14399–14404, 1995. View at Publisher · View at Google Scholar · View at Scopus
  177. J. E. Schnitzer, “Caveolae: from basic trafficking mechanisms to targeting transcytosis for tissue-specific drug and gene delivery in vivo,” Advanced Drug Delivery Reviews, vol. 49, no. 3, pp. 265–280, 2001. View at Publisher · View at Google Scholar · View at Scopus
  178. D. Mehta, J. Bhattacharya, M. A. Matthay, and A. B. Malik, “Integrated control of lung fluid balance,” American Journal of Physiology, vol. 287, no. 6, pp. L1081–L1090, 2004. View at Publisher · View at Google Scholar · View at Scopus
  179. R. Ghaffarian, T. Bhowmick, and S. Muro, “Transport of nanocarriers across gastrointestinal epithelial cells by a new transcellular route induced by targeting ICAM-1,” Journal of Controlled Release, vol. 163, pp. 25–33, 2012. View at Google Scholar
  180. V. Mane and S. Muro, “Biodistribution and endocytosis of ICAM-1-targeting antibodies versus nanocarriers in the gastrointestinal tract in mice,” International Journal of Nanomedicine, vol. 7, pp. 4223–4237, 2012. View at Google Scholar
  181. J. E. Blackwell, N. M. Dagia, J. B. Dickerson, E. L. Berg, and D. J. Goetz, “Ligand coated nanosphere adhesion to E- and P-selectin under static and flow conditions,” Annals of Biomedical Engineering, vol. 29, no. 6, pp. 523–533, 2001. View at Publisher · View at Google Scholar · View at Scopus
  182. T. N. Swaminathan, J. Liu, U. Balakrishnan, P. S. Ayyaswamy, R. Radhakrishnan, and D. M. Eckmann, “Dynamic factors controlling carrier anchoring on vascular cells,” IUBMB Life, vol. 63, no. 8, pp. 640–647, 2011. View at Publisher · View at Google Scholar · View at Scopus
  183. P. Charoenphol, R. B. Huang, and O. Eniola-Adefeso, “Potential role of size and hemodynamics in the efficacy of vascular-targeted spherical drug carriers,” Biomaterials, vol. 31, no. 6, pp. 1392–1402, 2010. View at Publisher · View at Google Scholar · View at Scopus
  184. P. Charoenphol, P. J. Onyskiw, M. Carrasco-Teja, and O. Eniola-Adefeso, “Particle-cell dynamics in human blood flow: implications for vascular-targeted drug delivery,” Journal of Biomechanics, vol. 45, pp. 2822–2828, 2012. View at Google Scholar
  185. K. Namdee, A. J. Thompson, P. Charoenphol, and O. Eniola-Adefeso, “Margination propensity of vascular-targeted spheres from blood flow in a microfluidic model of human microvessels,” Langmuir, vol. 29, pp. 2530–2535, 2013. View at Google Scholar
  186. M. F. Kiani, H. Yuan, X. Chen, L. Smith, M. W. Gaber, and D. J. Goetz, “Targeting microparticles to select tissue via radiation-induced upregulation of endothelial cell adhesion molecules,” Pharmaceutical Research, vol. 19, no. 9, pp. 1317–1322, 2002. View at Publisher · View at Google Scholar · View at Scopus
  187. H. S. Sakhalkar, J. Hanes, J. Fu et al., “Enhanced adhesion of ligand-conjugated biodegradable particles to colitic venules,” FASEB Journal, vol. 19, no. 7, pp. 792–794, 2005. View at Publisher · View at Google Scholar · View at Scopus
  188. H. S. Sakhalkar, M. K. Dalal, A. K. Salem et al., “Leukocyte-inspired biodegradable particles that selectively and avidly adhere to inflamed endothelium in vitro and in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 26, pp. 15895–15900, 2003. View at Publisher · View at Google Scholar · View at Scopus
  189. A. Fakhari, A. Baoum, T. J. Siahaan, K. B. Le, and C. Berkland, “Controlling ligand surface density optimizes nanoparticle binding to ICAM-1,” Journal of Pharmaceutical Sciences, vol. 100, no. 3, pp. 1045–1056, 2011. View at Publisher · View at Google Scholar · View at Scopus
  190. B. J. Zern, A. M. Chacko, J. Liu et al., “Reduction of nanoparticle avidity enhances the selectivity of vascular targeting and PET detection of pulmonary inflammation,” ACS Nano, vol. 7, pp. 2461–2469, 2013. View at Google Scholar
  191. V. V. Shuvaev, S. Tliba, J. Pick et al., “Modulation of endothelial targeting by size of antibody-antioxidant enzyme conjugates,” Journal of Controlled Release, vol. 149, no. 3, pp. 236–241, 2011. View at Publisher · View at Google Scholar · View at Scopus
  192. V. V. Shuvaev, M. A. Ilies, E. Simone et al., “Endothelial targeting of antibody-decorated polymeric filomicelles,” ACS Nano, vol. 5, no. 9, pp. 6991–6999, 2011. View at Publisher · View at Google Scholar · View at Scopus
  193. T. Bhowmick, E. Berk, X. Cui, V. R. Muzykantov, and S. Muro, “Effect of flow on endothelial endocytosis of nanocarriers targeted to ICAM-1,” Journal of Controlled Release, vol. 157, no. 3, pp. 485–492, 2012. View at Publisher · View at Google Scholar · View at Scopus
  194. J. Han, B. J. Zern, V. V. Shuvaev, P. F. Davies, S. Muro, and V. Muzykantov, “Acute and chronic shear stress differently regulate endothelial internalization of nanocarriers targeted to platelet-endothelial cell adhesion molecule-1,” ACS Nano, vol. 6, pp. 8824–8836, 2012. View at Google Scholar
  195. C. Chittasupho, S. X. Xie, A. Baoum, T. Yakovleva, T. J. Siahaan, and C. J. Berkland, “ICAM-1 targeting of doxorubicin-loaded PLGA nanoparticles to lung epithelial cells,” European Journal of Pharmaceutical Sciences, vol. 37, no. 2, pp. 141–150, 2009. View at Publisher · View at Google Scholar · View at Scopus
  196. B. D. Kozower, M. Christofidou-Solomidou, T. D. Sweitzer et al., “Immunotargeting of catalase to the pulmonary endothelium alleviates oxidative stress and reduces acute lung transplantation injury,” Nature Biotechnology, vol. 21, no. 4, pp. 392–398, 2003. View at Publisher · View at Google Scholar · View at Scopus
  197. I. K. Ko, T. J. Kean, and J. E. Dennis, “Targeting mesenchymal stem cells to activated endothelial cells,” Biomaterials, vol. 30, no. 22, pp. 3702–3710, 2009. View at Publisher · View at Google Scholar · View at Scopus
  198. S. M. Herbst, M. E. Klegerman, H. Kim et al., “Delivery of stem cells to porcine arterial wall with echogenic liposomes conjugated to antibodies against CD34 and intercellular adhesion molecule-1,” Molecular Pharmaceutics, vol. 7, no. 1, pp. 3–11, 2010. View at Publisher · View at Google Scholar · View at Scopus
  199. V. V. Shuvaev, J. Han, K. J. Yu et al., “PECAM-targeted delivery of SOD inhibits endothelial inflammatory response,” FASEB Journal, vol. 25, no. 1, pp. 348–357, 2011. View at Publisher · View at Google Scholar · View at Scopus
  200. R. Rossin, S. Muro, M. J. Welch, V. R. Muzykantov, and D. P. Schustery, “In vivo imaging of 64 Cu-labeled polymer nanoparticles targeted to the lung endothelium,” Journal of Nuclear Medicine, vol. 49, no. 1, pp. 103–111, 2008. View at Publisher · View at Google Scholar · View at Scopus
  201. A. Broisat, L. M. Riou, V. Ardisson et al., “Molecular imaging of vascular cell adhesion molecule-1 expression in experimental atherosclerotic plaques with radiolabelled B2702-p,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 34, no. 6, pp. 830–840, 2007. View at Publisher · View at Google Scholar · View at Scopus
  202. T. Himi, K. J. A. Kairemo, and H. A. Ramsay, “Expression profile of vascular cell adhesion molecule-1 (CD106) in the middle ear using radiolabeled monoclonal antibody,” European Archives of Oto-Rhino-Laryngology, vol. 255, no. 4, pp. 179–183, 1998. View at Publisher · View at Google Scholar · View at Scopus
  203. M. Nahrendorf, F. A. Jaffer, K. A. Kelly et al., “Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis,” Circulation, vol. 114, no. 14, pp. 1504–1511, 2006. View at Publisher · View at Google Scholar · View at Scopus
  204. A. J. Mieszawska, W. J. Mulder, Z. A. Fayad, and D. P. Cormode, “Multifunctional gold nanoparticles for diagnosis and therapy of disease,” Molecular Pharmacology, vol. 10, pp. 831–847, 2013. View at Google Scholar
  205. D. R. J. Owen, A. C. Lindsay, R. P. Choudhury, and Z. A. Fayad, “Imaging of atherosclerosis,” Annual Review of Medicine, vol. 62, pp. 25–40, 2011. View at Publisher · View at Google Scholar · View at Scopus
  206. R. P. Choudhury, V. Fuster, J. J. Badimon, E. A. Fisher, and Z. A. Fayad, “MRI and characterization of atherosclerotic plaque: emerging applications and molecular imaging,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 22, no. 7, pp. 1065–1074, 2002. View at Publisher · View at Google Scholar · View at Scopus
  207. P. R. Reynolds, D. J. Larkman, D. O. Haskard et al., “Detection of vascular expression of E-selectin in vivo with MR imaging,” Radiology, vol. 241, no. 2, pp. 469–476, 2006. View at Publisher · View at Google Scholar · View at Scopus
  208. C. Chapon, F. Franconi, F. Lacoeuille et al., “Imaging E-selectin expression following traumatic brain injury in the rat using a targeted USPIO contrast agent,” Magnetic Resonance Materials in Physics, Biology and Medicine, vol. 22, no. 3, pp. 167–174, 2009. View at Publisher · View at Google Scholar · View at Scopus
  209. S. I. van Kasteren, S. J. Campbell, S. Serres, D. C. Anthony, N. R. Sibson, and B. G. Davis, “Glyconanoparticles allow pre-symptomatic in vivo imaging of brain disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 1, pp. 18–23, 2009. View at Publisher · View at Google Scholar · View at Scopus
  210. A. Y. Jin, U. I. Tuor, D. Rushforth et al., “Magnetic resonance molecular imaging of post-stroke neuroinflammation with a P-selectin targeted iron oxide nanoparticle,” Contrast Media and Molecular Imaging, vol. 4, no. 6, pp. 305–311, 2009. View at Publisher · View at Google Scholar · View at Scopus
  211. A. Tsourkas, V. R. Shinde-Patil, K. A. Kelly et al., “In vivo imaging of activated endothelium using an anti-VCAM-1 magnetooptical probe,” Bioconjugate Chemistry, vol. 16, no. 3, pp. 576–581, 2005. View at Publisher · View at Google Scholar · View at Scopus
  212. M. A. McAteer, N. R. Sibson, C. von Zur Muhlen et al., “In vivo magnetic resonance imaging of acute brain inflammation using microparticles of iron oxide,” Nature Medicine, vol. 13, no. 10, pp. 1253–1258, 2007. View at Publisher · View at Google Scholar · View at Scopus
  213. L. C. Hoyte, K. J. Brooks, S. Nagel et al., “Molecular magnetic resonance imaging of acute vascular cell adhesion molecule-1 expression in a mouse model of cerebral ischemia,” Journal of Cerebral Blood Flow and Metabolism, vol. 30, no. 6, pp. 1178–1187, 2010. View at Publisher · View at Google Scholar · View at Scopus
  214. R. Southworth, M. Kaneda, J. Chen et al., “Renal vascular inflammation induced by Western diet in ApoE-null mice quantified byF19 NMR of VCAM-1 targeted nanobeacons,” Nanomedicine, vol. 5, no. 3, pp. 359–367, 2009. View at Publisher · View at Google Scholar · View at Scopus
  215. B. A. Kaufmann, C. L. Carr, J. T. Belcik et al., “Molecular imaging of the initial inflammatory response in atherosclerosis: implications for early detection of disease,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, no. 1, pp. 54–59, 2010. View at Publisher · View at Google Scholar · View at Scopus
  216. A. Jayagopal, P. K. Russ, and F. R. Haselton, “Surface engineering of quantum dots for in vivo vascular imaging,” Bioconjugate Chemistry, vol. 18, no. 5, pp. 1424–1433, 2007. View at Publisher · View at Google Scholar · View at Scopus
  217. L. H. Deddens, G. A. van Tilborg, A. van der Toorn et al., “MRI of ICAM-1 upregulation after stroke: the importance of choosing the appropriate target-specific particulate contrast agent,” Molecular Imaging and Biology, 2013. View at Publisher · View at Google Scholar
  218. E. A. Simone, B. J. Zern, A. M. Chacko et al., “Endothelial targeting of polymeric nanoparticles stably labeled with the PET imaging radioisotope iodine-124,” Biomaterials, vol. 33, no. 21, pp. 5406–5413, 2012. View at Publisher · View at Google Scholar · View at Scopus
  219. G. A. Koning, R. M. Schiffelers, M. H. M. Wauben et al., “Targeting of angiogenic endothelial cells at sites of inflammation by dexamethasone phosphate-containing RGD peptide liposomes inhibits experimental arthritis,” Arthritis and Rheumatism, vol. 54, no. 4, pp. 1198–1208, 2006. View at Publisher · View at Google Scholar · View at Scopus
  220. S. A. Ásgeirsdóttir, P. J. Zwiers, H. W. Morselt et al., “Inhibition of proinflammatory genes in anti-GBM glomerulonephritis by targeted dexamethasone-loaded AbEsel liposomes,” American Journal of Physiology, vol. 294, no. 3, pp. F554–F561, 2008. View at Publisher · View at Google Scholar · View at Scopus
  221. N. Hashida, N. Ohguro, N. Yamazaki et al., “High-efficacy site-directed drug delivery system using sialyl-Lewis X conjugated liposome,” Experimental Eye Research, vol. 86, no. 1, pp. 138–149, 2008. View at Publisher · View at Google Scholar · View at Scopus
  222. M. Everts, G. A. Koning, R. J. Kok et al., “In vitro cellular handling and in vivo targeting of E-selectin-directed immunoconjugates and immunoliposomes used for drug delivery to inflamed endothelium,” Pharmaceutical Research, vol. 20, no. 1, pp. 64–72, 2003. View at Publisher · View at Google Scholar · View at Scopus
  223. S. A. Ásgeirsdóttir, J. A. A. M. Kamps, H. I. Bakker et al., “Site-specific inhibition of glomerulonephritis progression by targeted delivery of dexamethasone to glomerular endothelium,” Molecular Pharmacology, vol. 72, no. 1, pp. 121–131, 2007. View at Publisher · View at Google Scholar · View at Scopus
  224. P. I. Homem de Bittencourt Jr., D. J. Lagranha, A. Maslinkiewicz et al., “LipoCardium: endothelium-directed cyclopentenone prostaglandin-based liposome formulation that completely reverses atherosclerotic lesions,” Atherosclerosis, vol. 193, no. 2, pp. 245–258, 2007. View at Publisher · View at Google Scholar · View at Scopus
  225. P. Vader, B. J. Crielaard, S. M. van Dommelen, R. van der Meel, G. Storm, and R. M. Schiffelers, “Targeted delivery of small interfering RNA to angiogenic endothelial cells with liposome-polycation-DNA particles,” Journal of Controlled Release, vol. 160, no. 2, pp. 211–216, 2012. View at Publisher · View at Google Scholar · View at Scopus
  226. J. M. Kuldo, S. A. Asgeirsdottir, P. J. Zwiers et al., “Targeted adenovirus mediated inhibition of NF-kappaB-dependent inflammatory gene expression in endothelial cells in vitro and in vivo,” Journal of Controlled Release, vol. 166, pp. 57–65, 2013. View at Google Scholar
  227. K. A. Whitehead, R. Langer, and D. G. Anderson, “Knocking down barriers: advances in siRNA delivery,” Nature Reviews Drug Discovery, vol. 8, no. 2, pp. 129–138, 2009. View at Publisher · View at Google Scholar · View at Scopus
  228. C. Wolfrum, S. Shi, K. N. Jayaprakash et al., “Mechanisms and optimization of in vivo delivery of lipophilic siRNAs,” Nature Biotechnology, vol. 25, no. 10, pp. 1149–1157, 2007. View at Publisher · View at Google Scholar · View at Scopus
  229. M. E. Davis, “The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic,” Molecular Pharmaceutics, vol. 6, no. 3, pp. 659–668, 2009. View at Publisher · View at Google Scholar · View at Scopus
  230. S. A. Ásgeirsdóttir, E. G. Talman, I. A. de Graaf et al., “Targeted transfection increases siRNA uptake and gene silencing of primary endothelial cells in vitro—a quantitative study,” Journal of Controlled Release, vol. 141, no. 2, pp. 241–251, 2010. View at Publisher · View at Google Scholar · View at Scopus
  231. J. E. Zuckerman, C. H. J. Choi, H. Han, and M. E. Davis, “Polycation-siRNA nanoparticles can disassemble at the kidney glomerular basement membrane,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 8, pp. 3137–3142, 2012. View at Publisher · View at Google Scholar · View at Scopus
  232. J. B. Lee, K. Zhang, Y. Y. C. Tam et al., “Lipid nanoparticle siRNA systems for silencing the androgen receptor in human prostate cancer in vivo,” International Journal of Cancer, vol. 131, no. 5, pp. E781–E790, 2012. View at Publisher · View at Google Scholar · View at Scopus
  233. M. C. Zimmerman, R. P. Dunlay, E. Lazartigues et al., “Requirement for Rac1-dependent NADPH oxidase in the cardiovascular and dipsogenic actions of angiotensin II in the brain,” Circulation Research, vol. 95, no. 5, pp. 532–539, 2004. View at Publisher · View at Google Scholar · View at Scopus
  234. Q. Li, N. Y. Spencer, F. D. Oakley, G. R. Buettner, and J. F. Engelhardt, “Endosomal Nox2 facilitates redox-dependent induction of NF-kB by TNF-α,” Antioxidants and Redox Signaling, vol. 11, no. 6, pp. 1249–1263, 2009. View at Publisher · View at Google Scholar · View at Scopus
  235. P. Lajoie, J. G. Goetz, J. W. Dennis, and I. R. Nabi, “Lattices, rafts, and scaffolds: domain regulation of receptor signaling at the plasma membrane,” Journal of Cell Biology, vol. 185, no. 3, pp. 381–385, 2009. View at Publisher · View at Google Scholar · View at Scopus
  236. M. Ushio-Fukai, “Compartmentalization of redox signaling through NaDPH oxidase-derived ROS,” Antioxidants and Redox Signaling, vol. 11, no. 6, pp. 1289–1299, 2009. View at Publisher · View at Google Scholar · View at Scopus
  237. F. D. Oakley, D. Abbott, Q. Li, and J. F. Engelhardt, “Signaling components of redox active endosomes: the redoxosomes,” Antioxidants and Redox Signaling, vol. 11, no. 6, pp. 1313–1333, 2009. View at Publisher · View at Google Scholar · View at Scopus
  238. D. G. Harrison, M. C. Gongora, T. J. Guzik, and J. Widder, “Oxidative stress and hypertension,” Journal of the American Society of Hypertension, vol. 1, no. 1, pp. 30–44, 2007. View at Publisher · View at Google Scholar · View at Scopus
  239. E. Schulz, T. Gori, and T. Münzel, “Oxidative stress and endothelial dysfunction in hypertension,” Hypertension Research, vol. 34, no. 6, pp. 665–673, 2011. View at Publisher · View at Google Scholar · View at Scopus
  240. A. T. Viau, A. Abuchowski, S. Greenspan, and F. F. Davis, “Safety evaluation of free radical scavengers PEG-catalase and PEG-superoxide dismutase,” Journal of Free Radicals in Biology and Medicine, vol. 2, no. 4, pp. 283–288, 1986. View at Google Scholar · View at Scopus
  241. C. Danel, S. C. Erzurum, P. Prayssac et al., “Gene therapy for oxidant injury-related diseases: adenovirus-mediated transfer of superoxide dismutase and catalase cDNAs protects against hyperoxia but not against ischemia-reperfusion lung injury,” Human Gene Therapy, vol. 9, no. 10, pp. 1487–1496, 1998. View at Google Scholar · View at Scopus
  242. M. W. Epperly, V. E. Kagan, C. A. Sikora et al., “Manganese superoxide dismutase-plasmid/liposome (MnSOD-PL) administration protects mice from esophagitis associated with fractionated radiation,” International Journal of Cancer, vol. 96, no. 4, pp. 221–231, 2001. View at Publisher · View at Google Scholar · View at Scopus
  243. M. L. Barnard, R. R. Baker, and S. Matalon, “Mitigation of oxidant injury to lung microvasculature by intratracheal instillation of antioxidant enzymes,” American Journal of Physiolog, vol. 265, no. 4, pp. L340–L345, 1993. View at Google Scholar · View at Scopus
  244. B. A. Freeman, J. F. Turrens, and Z. Mirza, “Modulation of oxidant lung injury by using liposome-entrapped superoxide dismutase and catalase,” Federation Proceedings, vol. 44, no. 10, pp. 2591–2595, 1985. View at Google Scholar · View at Scopus
  245. R. P. Bowler, J. Arcaroli, J. D. Crapo, A. Ross, J. W. Slot, and E. Abraham, “Extracellular superoxide dismutase attenuates lung injury after hemorrhage,” American Journal of Respiratory and Critical Care Medicine, vol. 164, no. 2, pp. 290–294, 2001. View at Google Scholar · View at Scopus
  246. S. C. Erzurum, P. Lemarchand, M. A. Rosenfeld, J. H. Yoo, and R. G. Crystal, “Protection of human endothelial cells from oxidant injury by adenovirus-mediated transfer of the human catalase cDNA,” Nucleic Acids Research, vol. 21, no. 7, pp. 1607–1612, 1993. View at Google Scholar · View at Scopus
  247. R. W. Payne, B. M. Murphy, and M. C. Manning, “Product development issues for PEGylated proteins,” Pharmaceutical Development and Technology, vol. 16, no. 5, pp. 423–240, 2010. View at Publisher · View at Google Scholar
  248. M. J. Joralemon, S. McRae, and T. Emrick, “PEGylated polymers for medicine: from conjugation to self-assembled systems,” Chemical Communications, vol. 46, no. 9, pp. 1377–1393, 2010. View at Publisher · View at Google Scholar · View at Scopus
  249. C. W. White, J. H. Jackson, A. Abuchowski et al., “Polyethylene glycol-attached antioxidant enzymes decrease pulmonary oxygen toxicity in rats,” Journal of Applied Physiology, vol. 66, no. 2, pp. 584–590, 1989. View at Google Scholar · View at Scopus
  250. X. Yi, M. C. Zimmerman, R. Yang, J. Tong, S. Vinogradov, and A. V. Kabanov, “Pluronic-modified superoxide dismutase 1 attenuates angiotensin II-induced increase in intracellular superoxide in neurons,” Free Radical Biology and Medicine, vol. 49, no. 4, pp. 548–558, 2010. View at Publisher · View at Google Scholar · View at Scopus
  251. S. Lee, S. C. Yang, M. J. Heffernan, W. R. Taylor, and N. Murthy, “Polyketal microparticles: a new delivery vehicle for superoxide dismutase,” Bioconjugate Chemistry, vol. 18, no. 1, pp. 4–7, 2007. View at Publisher · View at Google Scholar · View at Scopus
  252. M. K. Reddy and V. Labhasetwar, “Nanoparticle-mediated delivery of superoxide dismutase to the brain: an effective strategy to reduce ischemia-reperfusion injury,” FASEB Journal, vol. 23, no. 5, pp. 1384–1395, 2009. View at Publisher · View at Google Scholar · View at Scopus
  253. J. Wen, X. Jiang, Y. Dai et al., “Adenosine deaminase enzyme therapy prevents and reverses the heightened cavernosal relaxation in priapism,” Journal of Sexual Medicine, vol. 7, no. 9, pp. 3011–3022, 2010. View at Publisher · View at Google Scholar · View at Scopus
  254. E. G. Rosenbaugh, J. W. Roat, L. Gao et al., “The attenuation of central angiotensin II-dependent pressor response and intra-neuronal signaling by intracarotid injection of nanoformulated copper/zinc superoxide dismutase,” Biomaterials, vol. 31, no. 19, pp. 5218–5226, 2010. View at Publisher · View at Google Scholar · View at Scopus
  255. T. Matsui, S. I. Yamagishi, K. Nakamura, and H. Inoue, “Bay w 9798, a dihydropyridine structurally related to nifedipine with no calcium channel-blocking properties, inhibits tumour necrosis factor-α-induced vascular cell adhesion molecule-1 expression in endothelial cells by suppressing reactive oxygen species generation,” Journal of International Medical Research, vol. 35, no. 6, pp. 886–891, 2007. View at Google Scholar · View at Scopus
  256. S. I. Yamagishi, K. Nakamura, and T. Matsui, “Role of oxidative stress in the development of vascular injury and its therapeutic intervention by nifedipine,” Current Medicinal Chemistry, vol. 15, no. 2, pp. 172–177, 2008. View at Publisher · View at Google Scholar · View at Scopus
  257. B. Gao, S. C. Flores, J. A. Leff, S. K. Bose, and J. M. McCord, “Synthesis and anti-inflammatory activity of a chimeric recombinant superoxide dismutase: SOD2/3,” American Journal of Physiology, vol. 284, no. 6, pp. L917–L925, 2003. View at Google Scholar · View at Scopus
  258. S. J. Lin, S. K. Shyue, M. C. Shih et al., “Superoxide dismutase and catalase inhibit oxidized low-density lipoprotein-induced human aortic smooth muscle cell proliferation: role of cell-cycle regulation, mitogen-activated protein kinases, and transcription factors,” Atherosclerosis, vol. 190, no. 1, pp. 124–134, 2007. View at Publisher · View at Google Scholar · View at Scopus
  259. M. W. Epperly, H. L. Guo, M. Jefferson et al., “Cell phenotype specific kinetics of expression of intratracheally injected manganese superoxide dismutase-plasmid/liposomes (MnSOD-PL) during lung radioprotective gene therapy,” Gene Therapy, vol. 10, no. 2, pp. 163–171, 2003. View at Publisher · View at Google Scholar · View at Scopus
  260. M. Machtay, A. Scherpereel, J. Santiago et al., “Systemic polyethylene glycol-modified (PEGylated) superoxide dismutase and catalase mixture attenuates radiation pulmonary fibrosis in the C57/bl6 mouse,” Radiotherapy and Oncology, vol. 81, no. 2, pp. 196–205, 2006. View at Publisher · View at Google Scholar · View at Scopus
  261. L. Y. L. Chang, M. Subramaniam, B. A. Yoder et al., “A catalytic antioxidant attenuates alveolar structural remodeling in bronchopulmonary dysplasia,” American Journal of Respiratory and Critical Care Medicine, vol. 167, no. 1, pp. 57–64, 2003. View at Publisher · View at Google Scholar · View at Scopus
  262. Z. Vujaskovic, I. Batinic-Haberle, Z. N. Rabbani et al., “A small molecular weight catalytic metalloporphyrin antioxidant with superoxide dismutase (SOD) mimetic properties protects lungs from radiation-induced injury,” Free Radical Biology and Medicine, vol. 33, no. 6, pp. 857–863, 2002. View at Publisher · View at Google Scholar · View at Scopus
  263. V. E. Kagan, P. Wipf, D. Stoyanovsky et al., “Mitochondrial targeting of electron scavenging antioxidants: regulation of selective oxidation vs random chain reactions,” Advanced Drug Delivery Reviews, vol. 61, no. 14, pp. 1375–1385, 2009. View at Publisher · View at Google Scholar · View at Scopus
  264. M. Boissinot, L. A. Kuhn, P. Lee et al., “Rational design and expression of a-heparin-targeted human superoxide dismutase,” Biochemical and Biophysical Research Communications, vol. 190, no. 1, pp. 250–256, 1993. View at Publisher · View at Google Scholar · View at Scopus
  265. D. Hernandez-Saavedra, H. Zhou, and J. M. McCord, “Anti-inflammatory properties of a chimeric recombinant superoxide dismutase: SOD2/3,” Biomedicine and Pharmacotherapy, vol. 59, no. 4, pp. 204–208, 2005. View at Publisher · View at Google Scholar · View at Scopus
  266. N. Watanabe, T. Iwamoto, K. D. Bowen, D. A. Dickinson, M. Torres, and H. J. Forman, “Bio-effectiveness of Tat-catalase conjugate: a potential tool for the identification of H2O2-dependent cellular signal transduction pathways,” Biochemical and Biophysical Research Communications, vol. 303, no. 1, pp. 287–293, 2003. View at Publisher · View at Google Scholar · View at Scopus
  267. K. Nagata, Y. Iwasaki, T. Yamada et al., “Overexpression of manganese superoxide dismutase by N-acetylcysteine in hyperoxic lung injury,” Respiratory Medicine, vol. 101, no. 4, pp. 800–807, 2007. View at Publisher · View at Google Scholar · View at Scopus
  268. M. W. Epperly, C. A. Sikora, S. J. DeFilippi et al., “Pulmonary irradiation-induced expression of VCAM-I and ICAM-I is decreased by manganese superoxide dismutase-plasmid/liposome (MnSOD-PL) gene therapy,” Biology of Blood and Marrow Transplantation, vol. 8, no. 4, pp. 175–187, 2002. View at Google Scholar · View at Scopus
  269. G. S. Supinski and L. A. Callahan, “Polyethylene glycol-superoxide dismutase prevents endotoxin-induced cardiac dysfunction,” American Journal of Respiratory and Critical Care Medicine, vol. 173, no. 11, pp. 1240–1247, 2006. View at Publisher · View at Google Scholar · View at Scopus
  270. R. Igarashi, J. Hoshino, A. Ochiai, Y. Morizawa, and Y. Mizushima, “Lecithinized superoxide dismutase enhances its pharmacologic potency by increasing its cell membrane affinity,” Journal of Pharmacology and Experimental Therapeutics, vol. 271, no. 3, pp. 1672–1677, 1994. View at Google Scholar · View at Scopus
  271. D. D. H. Koo, K. I. Welsh, N. E. J. West et al., “Endothelial cell protection against ischemia/reperfusion injury by lecithinized superoxide dismutase,” Kidney International, vol. 60, no. 2, pp. 786–796, 2001. View at Publisher · View at Google Scholar · View at Scopus
  272. T. Ishihara, K. I. Tanaka, Y. Tasaka et al., “Therapeutic effect of lecithinized superoxide dismutase against colitis,” Journal of Pharmacology and Experimental Therapeutics, vol. 328, no. 1, pp. 152–164, 2009. View at Publisher · View at Google Scholar · View at Scopus
  273. C. S. Bonder, D. Knight, D. Hernandez-Saavedra, J. M. McCord, and P. Kubes, “Chimeric SOD2/3 inhibits at the endothelial-neutrophil interface to limit vascular dysfunction in ischemia-reperfusion,” American Journal of Physiology, vol. 287, no. 3, pp. G676–G684, 2004. View at Publisher · View at Google Scholar · View at Scopus
  274. J. Jiang, I. Kurnikov, N. A. Belikova et al., “Structural requirements for optimized delivery, inhibition of oxidative stress, and antiapoptotic activity of targeted nitroxides,” Journal of Pharmacology and Experimental Therapeutics, vol. 320, no. 3, pp. 1050–1060, 2007. View at Publisher · View at Google Scholar · View at Scopus
  275. R. J. Folz, A. M. Abushamaa, and H. B. Suliman, “Extracellular superoxide dismutase in the airways of transgenic mice reduces inflammation and attenuates lung toxicity following hyperoxia,” Journal of Clinical Investigation, vol. 103, no. 7, pp. 1055–1066, 1999. View at Google Scholar · View at Scopus
  276. V. R. Muzykantov, D. V. Sakharov, and S. P. Domogatsky, “Directed targeting of immunoerythrocytes provides local protection of endothelial cells from damage by hydrogen peroxide,” American Journal of Pathology, vol. 128, no. 2, pp. 276–285, 1987. View at Google Scholar · View at Scopus
  277. D. V. Sakharov, V. R. Muzykantov, S. P. Domogatsky, and S. M. Danilov, “Protection of cultured endothelial cells from hydrogen peroxide-induced injury by antibody-conjugated catalase,” Biochimica et Biophysica Acta, vol. 930, no. 2, pp. 140–144, 1987. View at Google Scholar · View at Scopus
  278. V. V. Shuvaev, S. Tliba, M. Nakada, S. M. Albelda, and V. R. Muzykantov, “Platelet-endothelial cell adhesion molecule-1-directed endothelial targeting of superoxide dismutase alleviates oxidative stress caused by either extracellular or intracellular superoxide,” Journal of Pharmacology and Experimental Therapeutics, vol. 323, no. 2, pp. 450–457, 2007. View at Publisher · View at Google Scholar · View at Scopus
  279. V. V. Shuvaev, M. Christofidou-Solomidou, F. Bhora et al., “Targeted detoxification of selected reactive oxygen species in the vascular endothelium,” Journal of Pharmacology and Experimental Therapeutics, vol. 331, no. 2, pp. 404–411, 2009. View at Publisher · View at Google Scholar · View at Scopus
  280. V. V. Shuvaev and V. R. Muzykantov, “Targeted modulation of reactive oxygen species in the vascular endothelium,” Journal of Controlled Release, vol. 153, no. 1, pp. 56–63, 2011. View at Publisher · View at Google Scholar · View at Scopus
  281. J. Han, V. V. Shuvaev, and V. R. Muzykantov, “Catalase and superoxide dismutase conjugated with platelet-endothelial cell adhesion molecule antibody distinctly alleviate abnormal endothelial permeability caused by exogenous reactive oxygen species and vascular endothelial growth factor,” Journal of Pharmacology and Experimental Therapeutics, vol. 338, no. 1, pp. 82–91, 2011. View at Publisher · View at Google Scholar · View at Scopus
  282. J. Han, V. V. Shuvaev, and V. R. Muzykantov, “Targeted interception of signaling reactive oxygen species in the vascular endothelium,” Therapeutic Delivery, vol. 3, no. 2, pp. 263–276, 2012. View at Publisher · View at Google Scholar · View at Scopus
  283. S. Muro, M. Mateescu, C. Gajewski, M. Robinson, V. R. Muzykantov, and M. Koval, “Control of intracellular trafficking of ICAM-1-targeted nanocarriers by endothelial Na+/H+ exchanger proteins,” American Journal of Physiology, vol. 290, no. 5, pp. L809–L817, 2006. View at Publisher · View at Google Scholar · View at Scopus
  284. T. D. Dziubla, A. Karim, and V. R. Muzykantov, “Polymer nanocarriers protecting active enzyme cargo against proteolysis,” Journal of Controlled Release, vol. 102, no. 2, pp. 427–439, 2005. View at Publisher · View at Google Scholar · View at Scopus
  285. E. A. Simone, T. D. Dziubla, E. Arguiri et al., “Loading PEG-catalase into filamentous and spherical polymer nanocarriers,” Pharmaceutical Research, vol. 26, no. 1, pp. 250–260, 2009. View at Publisher · View at Google Scholar · View at Scopus
  286. E. A. Simone, T. D. Dziubla, D. E. Discher, and V. R. Muzykantov, “Filamentous polymer nanocarriers of tunable stiffness that encapsulate the therapeutic enzyme catalase,” Biomacromolecules, vol. 10, no. 6, pp. 1324–1330, 2009. View at Publisher · View at Google Scholar · View at Scopus
  287. E. D. Hood, C. F. Greineder, C. Dodia et al., “Antioxidant protection by PECAM-targeted delivery of a novel NADPH-oxidase inhibitor to the endothelium in vitro and in vivo,” Journal of Controlled Release, vol. 163, no. 2, pp. 161–169, 2012. View at Publisher · View at Google Scholar
  288. E. Beutler, “Lysosomal storage diseases: natural history and ethical and economic aspects,” Molecular Genetics and Metabolism, vol. 88, no. 3, pp. 208–215, 2006. View at Publisher · View at Google Scholar · View at Scopus
  289. A. H. Futerman and G. van Meer, “The cell biology of lysosomal storage disorders,” Nature Reviews Molecular Cell Biology, vol. 5, no. 7, pp. 554–565, 2004. View at Publisher · View at Google Scholar · View at Scopus
  290. P. J. Meikle, J. J. Hopwood, A. E. Clague, and W. F. Carey, “Prevalence of lysosomal storage disorders,” Journal of the American Medical Association, vol. 281, no. 3, pp. 249–254, 1999. View at Publisher · View at Google Scholar · View at Scopus
  291. G. A. Grabowski, “Delivery of lysosomal enzymes for therapeutic use: glucocerebrosidase as an example,” Expert Opinion on Drug Delivery, vol. 3, no. 6, pp. 771–782, 2006. View at Publisher · View at Google Scholar · View at Scopus
  292. R. O. Brady and R. Schiffmann, “Enzyme-replacement therapy for metabolic storage disorders,” Lancet Neurology, vol. 3, no. 12, pp. 752–756, 2004. View at Publisher · View at Google Scholar · View at Scopus
  293. R. J. Desnick and E. H. Schuchman, “Enzyme replacement and enhancement therapies: lessons from lysosomal disorders,” Nature Reviews Genetics, vol. 3, no. 12, pp. 954–966, 2002. View at Publisher · View at Google Scholar · View at Scopus
  294. M. G. Rosenfeld, G. Kreibich, and D. Popov, “Biosynthesis of lysosomal hydrolases: their synthesis in bound polysomes and the role of co- and post-translational processing in determining their subcellular distribution,” Journal of Cell Biology, vol. 93, no. 1, pp. 135–143, 1982. View at Google Scholar · View at Scopus
  295. H. Du, M. Levine, C. Ganesa, D. P. Witte, E. S. Cole, and G. A. Grabowski, “The role of mannosylated enzyme and the mannose receptor in enzyme replacement therapy,” American Journal of Human Genetics, vol. 77, no. 6, pp. 1061–1074, 2005. View at Publisher · View at Google Scholar · View at Scopus
  296. E. F. Neufeld, “The uptake of enzymes into lysosomes: an overview,” Birth Defects, vol. 16, no. 1, pp. 77–84, 1980. View at Google Scholar · View at Scopus
  297. S. R. P. Miranda, X. He, C. M. Simonaro et al., “Infusion of recombinant human acid sphingomyelinase into Niemann-Pick disease mice leads to visceral, but not neurological, correction of the pathophysiology,” FASEB Journal, vol. 14, no. 13, pp. 1988–1995, 2000. View at Google Scholar · View at Scopus
  298. E. H. Schuchman and R. J. Desnick, “Niemann-pick disease types A and B: acid sphingomyelinase deficiencies,” in Lysosomal Disorders the Metabolic and Molecular Bases of Inherited Disease, C. Scriver, A. Beaudet, W. Sly et al., Eds., chapter 16, McGraw-Hill, 8th edition, 2000. View at Google Scholar
  299. J. S. Bae, K. H. Jang, E. H. Schuchman, and H. K. Jin, “Comparative effects of recombinant acid sphingomyelinase administration by different routes in Niemann-Pick disease mice,” Experimental Animals, vol. 53, no. 5, pp. 417–421, 2004. View at Publisher · View at Google Scholar · View at Scopus
  300. X. He, S. R. P. Miranda, X. Xiong, A. Dagan, S. Gatt, and E. H. Schuchman, “Characterization of human acid sphingomyelinase purified from the media of overexpressing Chinese hamster ovary cells,” Biochimica et Biophysica Acta, vol. 1432, no. 2, pp. 251–264, 1999. View at Publisher · View at Google Scholar · View at Scopus
  301. S. Muro, E. H. Schuchman, and V. R. Muzykantov, “Lysosomal enzyme delivery by ICAM-1-targeted nanocarriers bypassing glycosylation- and clathrin-dependent endocytosis,” Molecular Therapy, vol. 13, no. 1, pp. 135–141, 2006. View at Publisher · View at Google Scholar · View at Scopus
  302. S. D. Marlin and T. A. Springer, “Purified intercellular adhesion molecule-1 (ICAM-1) is a ligand for lymphocyte function-associated antigen 1 (LFA-1),” Cell, vol. 51, no. 5, pp. 813–819, 1987. View at Google Scholar · View at Scopus
  303. M. P. Bevilacqua, “Endothelial-leukocyte adhesion molecules,” Annual Review of Immunology, vol. 11, pp. 767–804, 1993. View at Google Scholar · View at Scopus
  304. S. Muro, “VCAM-1 and ICAM-1,” in Endothelial Biomedicine, W. C. Aird, Ed., pp. 1058–1070, Cambridge University Press, 2007. View at Google Scholar
  305. T. DeGraba, S. Azhar, F. Dignat-George et al., “Profile of endothelial and leukocyte activation in Fabry patients,” Annals of Neurology, vol. 47, pp. 229–233, 2000. View at Google Scholar
  306. C. Garnacho, R. Dhami, E. Simone et al., “Delivery of acid sphingomyelinase in normal and niemann-pick disease mice using intercellular adhesion molecule-1-targeted polymer nanocarriers,” Journal of Pharmacology and Experimental Therapeutics, vol. 325, no. 2, pp. 400–408, 2008. View at Publisher · View at Google Scholar · View at Scopus
  307. J. Hsu, D. Serrano, T. Bhowmick et al., “Enhanced endothelial delivery and biochemical effects of α-galactosidase by ICAM-1-targeted nanocarriers for Fabry disease,” Journal of Controlled Release, vol. 149, no. 3, pp. 323–331, 2011. View at Publisher · View at Google Scholar · View at Scopus
  308. J. Hsu, L. Northrup, T. Bhowmick, and S. Muro, “Enhanced delivery of α-glucosidase for Pompe disease by ICAM-1-targeted nanocarriers: comparative performance of a strategy for three distinct lysosomal storage disorders,” Nanomedicine, vol. 8, no. 5, pp. 731–739, 2012. View at Publisher · View at Google Scholar · View at Scopus
  309. J. Papademetriou, C. Garnacho, D. Serrano, T. Bhowmick, E. H. Schuchman, and S. Muro, “Comparative binding, endocytosis, and biodistribution of antibodies and antibody-coated carriers for targeted delivery of lysosomal enzymes to ICAM-1 versus transferrin receptor,” Journal of Inherited Metabolic Disease, vol. 36, no. 3, pp. 467–477, 2013. View at Publisher · View at Google Scholar
  310. C. T. Esmon, “Inflammation and thrombosis,” Journal of Thrombosis and Haemostasis, vol. 1, no. 7, pp. 1343–1348, 2003. View at Publisher · View at Google Scholar · View at Scopus
  311. D. A. Dichek, J. Anderson, A. B. Kelly, S. R. Hanson, and L. A. Harker, “Enhanced in vivo antithrombotic effects of endothelial cells expressing recombinant plasminogen activators transduced with retroviral vectors,” Circulation, vol. 93, no. 2, pp. 301–309, 1996. View at Google Scholar · View at Scopus
  312. J. M. Kiely, M. I. Cybulsky, F. W. Luscinskas, and M. A. Gimbrone Jr., “Immunoselective targeting of an anti-thrombin agent to the surface of cytokine-activated vascular endothelial cells,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 15, no. 8, pp. 1211–1218, 1995. View at Google Scholar · View at Scopus
  313. V. R. Muzykantov, E. S. Barnathan, E. N. Atochina, A. Kuo, S. M. Danilov, and A. B. Fisher, “Targeting of antibody-conjugated plasminogen activators to the pulmonary vasculature,” Journal of Pharmacology and Experimental Therapeutics, vol. 279, no. 2, pp. 1026–1034, 1996. View at Google Scholar · View at Scopus
  314. D. D. Spragg, D. R. Alford, R. Greferath et al., “Immunotargeting of liposomes to activated vascular endothelial cells: a strategy for site-selective delivery in the cardiovascular system,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 16, pp. 8795–8800, 1997. View at Publisher · View at Google Scholar · View at Scopus
  315. S. S. Husain, “Single-chain urokinase-type plasminogen activator does not possess measurable intrinsic amidolytic or plasminogen activator activities,” Biochemistry, vol. 30, no. 23, pp. 5797–5805, 1991. View at Google Scholar · View at Scopus
  316. A. Ichinose, K. Fujikawa, and T. Suyama, “The activation of pro-urokinase by plasma kallikrein and its inactivation by thrombin,” Journal of Biological Chemistry, vol. 261, no. 8, pp. 3486–3489, 1986. View at Google Scholar · View at Scopus
  317. W. P. Yang, J. Goldstein, R. Procyk, G. R. Matsueda, and S. Y. Shaw, “Design and evaluation of a thrombin-activable plasminogen activator,” Biochemistry, vol. 33, no. 8, pp. 2306–2312, 1994. View at Publisher · View at Google Scholar · View at Scopus
  318. B. S. Ding, N. Hong, J. C. Murciano et al., “Prophylactic thrombolysis by thrombin-activated latent prourokinase targeted to PECAM-1 in the pulmonary vasculature,” Blood, vol. 111, no. 4, pp. 1999–2006, 2008. View at Publisher · View at Google Scholar · View at Scopus
  319. C. T. Esmon, “Inflammation and the activated protein C anticoagulant pathway,” Seminars in Thrombosis and Hemostasis, vol. 32, supplement 1, pp. 49–60, 2006. View at Publisher · View at Google Scholar · View at Scopus
  320. Y. X. Wang, C. Wu, J. Vincelette et al., “Amplified anticoagulant activity of tissue factor-targeted thrombomodulin,” Thrombosis and Haemostasis, vol. 96, no. 3, pp. 317–324, 2006. View at Publisher · View at Google Scholar · View at Scopus
  321. B. S. Ding, N. Hong, M. Christofidou-Solomidou et al., “Anchoring fusion thrombomodulin to the endothelial lumen protects against injury-induced lung thrombosis and inflammation,” American Journal of Respiratory and Critical Care Medicine, vol. 180, no. 3, pp. 247–256, 2009. View at Publisher · View at Google Scholar · View at Scopus
  322. E. Simone, B. S. Ding, and V. Muzykantov, “Targeted delivery of therapeutics to endothelium,” Cell and Tissue Research, vol. 335, no. 1, pp. 283–300, 2009. View at Publisher · View at Google Scholar · View at Scopus
  323. M. S. Runge, T. Quertermous, P. J. Zavodny et al., “A recombinant chimeric plasminogen activator with high affinity for fibrin has increased thrombolytic potency in vitro and in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 22, pp. 10337–10341, 1991. View at Google Scholar · View at Scopus
  324. P. Holvoet, Y. Laroche, J. M. Stassen et al., “Pharmacokinetic and thrombolytic properties of chimeric plasminogen activators consisting of a single-chain Fv fragment of a fibrin-specific antibody fused to single-chain urokinase,” Blood, vol. 81, no. 3, pp. 696–703, 1993. View at Google Scholar · View at Scopus
  325. K. Ley, “Pathways and bottlenecks in the web of inflammatory adhesion molecules and chemoattractants,” Immunologic Research, vol. 24, no. 1, pp. 87–95, 2001. View at Publisher · View at Google Scholar · View at Scopus
  326. H. Ulbrich, E. E. Eriksson, and L. Lindbom, “Leukocyte and endothelial cell adhesion molecules as targets for therapeutic interventions in inflammatory disease,” Trends in Pharmacological Sciences, vol. 24, no. 12, pp. 640–647, 2003. View at Publisher · View at Google Scholar · View at Scopus
  327. J. M. Harlan and R. K. Winn, “Leukocyte-endothelial interactions: clinical trials of anti-adhesion therapy,” Critical Care Medicine, vol. 30, no. 5, pp. S214–S219, 2002. View at Google Scholar · View at Scopus