Table of Contents
ISRN Signal Processing
Volume 2013 (2013), Article ID 928971, 18 pages
http://dx.doi.org/10.1155/2013/928971
Research Article

Anisotropic Diffusion for Details Enhancement in Multiexposure Image Fusion

1Baddi University of Emerging Sciences and Technology, Baddi, Solan 173205, India
2Grupo de Procesado Multimedia, Departamento de Teoría de la Señal y Comunicaciones, Universidad Carlos III de Madrid, Leganés, 28911 Madrid, Spain
3Jaypee University of Information Technology, Waknaghat, Solan 173215, India

Received 21 February 2013; Accepted 25 March 2013

Academic Editors: Y.-S. Chen, A. Ito, C. S. Lin, and J.-G. Wang

Copyright © 2013 Harbinder Singh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Reinhard, G. Ward, S. Pattanaik, and P. Debvec, High Dynamic Range Imaging Acquisition, Manipulation, and Display, Morgan Kaufmann, 2005.
  2. J. A. Ferwerda, S. N. Pattanaik, P. Shirley, and D. P. Greenberg, “Model of visual adaptation for realistic image synthesis,” in Proceedings of the Computer Graphics Conference (SIGGRAPH '96), pp. 249–258, August 1996. View at Scopus
  3. P. E. Debevec and J. Malik, “Recovering high dynamic range radiance maps from photographs,” in Proceedings of the 24th ACM Annual Conference on Computer Graphics and Interactive techniques (SIGGRAPH '97), pp. 369–378, Los Angeles, Calif, USA, August 1997. View at Scopus
  4. S. Mann and R. W. Picard, “Being “undigital” with digital cameras: extending dynamic range by combining differently exposed pictures,” in Proceedings of the IS&T's 48th Annual Conference, pp. 442–448, May 1995. View at Scopus
  5. K. Jacobs, C. Loscos, and G. Ward, “Automatic high-dynamic range image generation for dynamic scenes,” IEEE Computer Graphics and Applications, vol. 28, no. 2, pp. 84–93, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Ward, “Fast, robust image registration for compositing high dynamic range photographs from hand-held exposures,” Journal of Graphics Tools, vol. 8, no. 2, pp. 17–30, 2003. View at Google Scholar
  7. A. Tomaszewska and R. Mantiuk, “Image registration for multi-exposure high dynamic range image acquisition,” in Proceedings of the International Conference on Computer Graphics, Visualization and Computer Vision, Plzen, Czech Republic, 2007.
  8. E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda, “Photographic tone reproduction for digital images,” ACM Transactions on Graphics, vol. 21, no. 3, pp. 267–276, 2002. View at Google Scholar
  9. H. Seetzen, W. Heidrich, W. Stuerzlinger et al., “High dynamic range display system,” ACM Transaction on Graphics, vol. 23, no. 3, pp. 760–768, 2004. View at Google Scholar
  10. H. Seetzen, L. A. Whitehead, and G. Ward, “A high dynamic range display using low and high resolution modulator,” in Proceedings of the Society for Information Display International Symposium, vol. 34, pp. 1450–1453, 2003.
  11. P. J. Burt and E. H. Adelson, “The Laplacian pyramid as a compact image code,” IEEE Transactions on Communications, vol. 31, no. 4, pp. 532–540, 1983. View at Google Scholar · View at Scopus
  12. P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 7, pp. 629–639, 1990. View at Google Scholar
  13. T. Mertens, J. Kautz, and F. Van Reeth, “Exposure fusion: a simple and practical alternative to high dynamic range photography,” Computer Graphics Forum, vol. 28, no. 1, pp. 161–171, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Fattal, M. Agrawala, and S. Rusinkiewicz, “Multiscale shape and detail enhancement from multi-light image collections,” in Proceedings of the International Conference on Computer Graphics and Interactive Techniques (ACM SIGGRAPH '07), vol. 51, August 2007. View at Scopus
  15. M. I. Smith and J. P. Heather, “Review of image fusion technology,” in Proceedings of the Defense and Security Symposium, vol. 5782, pp. 29–45, Orlando, Fla, USA, 2005.
  16. G. W. Larson, H. Rushmeier, and C. Piatko, “A visibility matching tone reproduction operator for high dynamic range scenes,” IEEE Transactions on Visualization and Computer Graphics, vol. 3, no. 4, pp. 291–306, 1997. View at Google Scholar · View at Scopus
  17. F. Drago, K. Myszkowski, T. Annen, and N. Chiba, “Adaptive logarithmic mapping for displaying high contrast scenes,” Computer Graphics Forum, vol. 22, no. 3, pp. 419–426, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. E. Reinhard and K. Devlin, “Dynamic range reduction inspired by photoreceptor physiology,” IEEE Transactions on Visualization and Computer Graphics, vol. 11, no. 1, pp. 13–24, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Li, L. Sharan, and E. H. Adelson, “Compressing and Companding high dynamic range images with subband architectures,” ACM Transactions on Graphics, vol. 24, no. 3, pp. 836–844, 2005. View at Google Scholar
  20. R. Fattal, D. Lischinski, and M. Werman, “Gradient domain high dynamic range compression,” ACM Transactions on Graphics, vol. 21, no. 3, pp. 249–256, 2002. View at Google Scholar
  21. F. Durand and J. Dorsey, “Fast bilateral Filtering for the display of high dynamic range images,” ACM Transaction on Graphics, vol. 21, no. 3, pp. 257–266, 2002. View at Google Scholar
  22. W. F. Lee, T. Y. Lin, M. L. Chu, T. H. Huang, and H. H. Chen, “Perception-based high dynamic range compression in gradient domain,” in Proceedings of the IEEE International Conference on Image Processing (ICIP '09), pp. 1805–1808, November 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. J. M. Ogden, E. H. Adelson, J. R. Bergen, and P. J. Burt, “Pyramid based computer graphics,” RCA Engineer, vol. 30, no. 5, pp. 4–15, 1985. View at Google Scholar · View at Scopus
  24. A. Agrawal, R. Raskar, S. K. Nayar, and Y. Li, “Removing photography artifacts using gradient projection and flash exposure sampling,” ACM Transaction on Graphics, vol. 24, no. 3, pp. 828–835, 2005. View at Google Scholar
  25. G. Petschnigg, R. Szeliski, M. Agrawala, M. F. Cohen, H. Hoppe, and K. Toyama, “Digital photography with flash and no-flash image pairs,” ACM Transaction on Graphics, vol. 23, no. 3, pp. 664–672, 2004. View at Google Scholar
  26. S. Li and B. Yang, “Multifocus image fusion using region segmentation and spatial frequency,” Image and Vision Computing, vol. 26, no. 7, pp. 971–979, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. J. H. Adu and M. Wang, “Multi-focus image fusion based on WNMF and focal point analysis,” Journal of Convergence Information Technology, vol. 6, no. 7, pp. 109–117, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Raman and S. Chaudhuri, “Bilateral filter based compositing for variable exposure photography,” in Proceedings of Eurographics, Munich, Germany, 2009.
  29. A. Goshtasby, “Fusion of multi-exposure images,” Image and Vision Computing, vol. 23, pp. 611–618, 2005. View at Google Scholar
  30. R. Szeliski, “System and process for improving the uniformity of the exposure and tone of a digital image,” U. S. Patent No. 6687400, 2004.
  31. Y. Zhao, J. Shen, and Y. He, “Subband architecture based exposure fusion,” in Proceedings of the 4th Pacific-Rim Symposium on Image and Video Technology (PSIVT '10), pp. 501–506, Singapore, November 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. S. G. Mallat, “A theory for multiresolution signal decomposition: The wavelet representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, no. 4, pp. 674–693, 1989. View at Google Scholar
  33. A. L. da Cunha, J. Zhou, and M. N. Do, “The nonsubsampled contourlet transform: Theory, design, and applications,” IEEE Transactions on Image Processing, vol. 15, no. 10, pp. 3089–3101, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. M. N. Do and M. Vetterli, “The contourlet transform: An efficient directional multiresolution image representation,” IEEE Transactions on Image Processing, vol. 14, no. 12, pp. 2091–2106, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. M. J. Black, G. Sapiro, D. H. Marimont, and D. Heeger, “Robust anisotropic diffusion,” IEEE Transactions on Image Processing, vol. 7, no. 3, pp. 421–432, 1998. View at Google Scholar · View at Scopus
  36. Z. Farbman, R. Fattal, D. Lischinski, and R. Szeliski, “Edge-preserving decompositions for multi-scale tone and detail manipulation,” ACM Transactions on Graphics, vol. 27, no. 3, article 67, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Wen, G. Gao, and Z. Chen, “Multiresolution model for image denoising based on total least squares,” in Proceedings of the 4th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD '07), pp. 622–626, August 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Liu, “Adaptive scalar and vector median filtering of noisy colour images based on noise estimation,” IET Image Processing, vol. 5, no. 6, pp. 541–553, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. D. N. Vizireanu, S. Halunga, and G. Marghescu, “Morphological skeleton decomposition interframe interpolation method,” Journal of Electronic Imaging, vol. 19, no. 2, Article ID 023018, pp. 1–3, 2010. View at Google Scholar
  40. K. He, J. Sun, and X. Tang, “Guided image filtering,” in Proceedings of the ECCV, vol. 6311 of Lecture Notes in Computer Science, pp. 1–14, Springer, 2010.
  41. S. Paris, P. Kornprobst, J. Tumblin, and F. Durand, “Bilateral filtering: theory and applications,” Foundations and Trends in, Computer Graphics and Vision, vol. 4, no. 1, pp. 1–73, 2008. View at Google Scholar
  42. C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” in Proceedings of the ICCV, pp. 839–846, IEEE Computer Society, 1998.
  43. J. Canny, “Finding edges and lines in images,” Tech. Rep. 720, MIT, Artificial Intelligence Laboratory, 1983. View at Google Scholar
  44. J. Shen, Y. Zhao, and Y. He, “Detail-preserving exposure fusion using subband architecture,” The Visual Computer, vol. 28, no. 5, pp. 463–473, 2012. View at Google Scholar
  45. A. A. Minai and R. D. Williams, “On the derivatives of the sigmoid,” Neural Networks, vol. 6, no. 6, pp. 845–853, 1993. View at Google Scholar · View at Scopus
  46. R. Shen, I. Cheng, J. Shi, and A. Basu, “Generalized random walks for fusion of multi-exposure images,” IEEE Transactions on Image Processing, vol. 99, pp. 3634–3646, 2011. View at Google Scholar
  47. W. Zhang and W.-K. Cham, “Gradient-directed multiexposure composition,” IEEE Transaction on Image Processing, vol. 21, no. 4, pp. 2318–2323, 2012. View at Google Scholar
  48. J. Tumblin and G. Turk, “LCIS: a boundary hierarchy for detail-preserving contrast reduction,” in Proceedings of the ACM SIGGRAPH, pp. 83–90, A. Rockwood, 1999.
  49. P. Hodáková, I. Perfilieva, M. Dănková, and M. Vajgl, “Ftransform based image fusion,” in Image Fusion, O. Ukimura, Ed., pp. 3–22, InTech, Rijeka, Croatia, 2011. View at Google Scholar
  50. Z. Wang, H. R. Sheikh, and A. C. Bovik, “No reference perceptual quality assessment of JPEG compressed images,” in Proceedings of the International Conference on Image Processing (ICIP '02), pp. 477–480, September 2002. View at Scopus